Tritax Symmetry (Hinckley) Limited

HINCKLEY NATIONAL RAIL FREIGHT INTERCHANGE

The Hinckley National Rail Freight Interchange Development Consent Order

Project reference TR050007

Environmental Statement Volume 2: Appendices

Appendix 8.1: Transport Assessment [part 10 of 20] VISSIM LMVR Base Models

Document reference: 6.2.8.1

Revision: 05

November 2022

Planning Act 2008

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Regulation 5(2)(a)

The Infrastructure Planning (Environmental Impact Assessment) Regulations 2017 Regulation 14

This document forms a part of the Environmental Statement for the Hinckley National Rail Freight Interchange project.

Tritax Symmetry (Hinckley) Limited (TSH) has applied to the Secretary of State for Transport for a Development Consent Order (DCO) for the Hinckley National Rail Freight Interchange (HNRFI).

To help inform the determination of the DCO application, TSH has undertaken an environmental impact assessment (EIA) of its proposals. EIA is a process that aims to improve the environmental design of a development proposal, and to provide the decision maker with sufficient information about the environmental effects of the project to make a decision.

The findings of an EIA are described in a written report known as an Environmental Statement (ES). An ES provides environmental information about the scheme, including a description of the development, its predicted environmental effects and the measures proposed to ameliorate any adverse effects.

Further details about the proposed Hinckley National Rail Freight Interchange are available on the project website:

The DCO application and documents relating to the examination of the proposed development can be viewed on the Planning Inspectorate's National Infrastructure Planning website:

https://infrastructure.planninginspectorate.gov.uk/projects/eastmidlands/hinckley-national-rail-freight-interchange/

TRANSPORT & INFRASTRUCTURE PLANNING

Tritax Symmetry Ltd Hinckley National Rail Freight Interchange M69 Junction 1 VISSIM Local Model Validation Report

TRANSPORT & INFRASTRUCTURE PLANNING

Tritax Symmetry Ltd

Hinckley National Rail Freight Interchange

M69 Junction 1 VISSIM

Local Model Validation Report

Birmingham Livery Place, 35 Livery Street, Colmore Business District Birmingham, B3 2PB T: 0121 233 3322

> Leeds Vhitehall Waterfront, 2 Riverside Way Leeds, LS1 4EH T: 0113 233 8000

> > London 11 Borough High Street London, SE1 9SE T: 0207 407 3879

Manchester 11 Portland Street Manchester, M1 3HU T: 0161 233 4260

Market Harborough Harborough Innovation Centre, Wellington Way, Airfield Business Park, Leicester Road Market Harborough, Leicestershire, LE16 7WB T: 01858 455020

> Nottingham 5th Floor, Waterfront House, Station Street Nottingham, NG2 3DQ T: 0115 924 1100

> > January 2021

DOCUMENT ISSUE RECORD

Document Number:	HNRFI-BWB-GEN-XX-RP-TR-0004 -S4-P01_LMVR
	NTT2814

Revision	Date of Issue	Status	Author:	Checked:	Approved:
1	05/01/21	Issue 1	Luke Best	Daniel Bent	Vibeeshan Devaharan

Notice

This document has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this document by any third party. No part of this document shall be copied or reproduced in any form without the prior written permission of BWB.

CONTENTS

1.	INTRODUCTION	5
	Instruction	5
	Site Location	5
	Report Purpose	5
2.	REPORT STRUCTURE	7
	The report is structured as follows:	7
3.	BASE MODEL DEVELOPMENT	8
	Model Specification	8
	Base Data – Changes from Default Driving Behaviour Parameters	9
	Base Data – Changes from Default Desired Speed Profiles	9
	Model Assignment	9
4.	BASE MODEL CALIBRATION	1
	TRAFFIC FLOW SOURCES	1
	TRAFFIC FLOW CALIBRATION	2
	TRAFFIC SIGNAL CALIBRATION	3
5.	BASE MODEL VALIDATION	4
	VEHICLE JOURNEY TIME VALIDATION	4
	JOURNEY TIME DATA	5
6.	SUMMARY AND CONCLUSIONS	7
	SUMMARY	7
	CONCLUSION	7

FIGURES

Figure 1. Site Location Figure 2. Traffic Flow Source Location Figure 3. Journey Time Routes - Primary

Figure 4. Journey Time Routes - Secondary

TABLES

Table 1: AM Flow Calibration – 0730-0830hrs Table 2: AM Flow Calibration – 0830-0930hrs Table 3: AM Flow Calibration – 0730-0930hrs Table 4: PM Flow Calibration – 1630-1730hrs Table 5: PM Flow Calibration – 1730-1830hrs Table 6: PM Flow Calibration – 1630-1830hrs Table 7: AM Journey Time Validation

Table 8: PM Journey Time Validation

APPENDICES

APPENDIX 1: Flow Calibration APPENDIX 2: Journey Time Validation

1. INTRODUCTION

Instruction

BWB Consulting has been commissioned as part a wider project scope by Tritax Symmetry Ltd to develop a series of highway models capable assessing any highway impacts resultant of the proposed Hinckley National Rail Freight Interchange (HNRFI) development. It is understood that the site will be developed serving a maximum of 850,000sqm of B8 warehousing/distribution uses, with access served directly onto M69 Junction 2.

The model purpose is to provide a robust platform on which the proposed development can be tested, allowing any impacts on the junction and surrounding highway network to be assessed.

Site Location

1.1 **Figure 1** below displays the indicative location of the proposed development, as well as the relative position of the highway model extents.

Figure 1: Site Location

Report Purpose

1.2 Due to the scale of the proposed development and the likely vehicular trips that it will generate, a comprehensive micro-simulation model of the M69 Junction 1 gyratory has been developed using PTV Group's VISSIM software.

- 1.3 The following Local Model Validation Report (LMVR) summarises the methodology used to build and test the model, as well as the results obtained to determine the suitability of the model for use in proposed option testing.
- 1.4 Following the completion of the validation process, the model will be submitted for approval to Highways England (HE) and Leicestershire County Council (LCC) as the Local Highway Authority (LHA), for review, comment, and agreement.
- 1.5 This LMVR seeks to define in detail the process and procedures followed in the development of the modelled network and the methods applied in the traffic modelling itself.

2. **REPORT STRUCTURE**

The report is structured as follows:

- Section 2: Base Model Development including details on the software used, the model extents alteration process, duration and any changes made to software parameters in line with best-practice recommendations;
- Section 3: Base Model Calibration including a comparison of the previous model with this cordoned model, as well as observed and modelled turning flows;
- Section 4: Model Validation including the comparison of observed and modelled journey times; and
- Section 5: Summary and Recommendations including a summary of the model development process and the overall suitability for future use.

3. BASE MODEL DEVELOPMENT

Model Specification

- 3.1 VISSIM Version 20.00-14
- 3.2 Model Base Year 2019
- 3.3 Model Time Periods:
 - Weekday AM 07:00-07:30 (warm-up), 07:30-09:30 (peak period/s), 09:30-10:00 (cooldown)
 - Weekday PM 16:00-16:30 (warm-up), 16:30-18:30 (peak period/s), 18:30-19:00 (cooldown)
- 3.4 Model units have been specified as:
 - Metres (m);
 - Kilometres (km);
 - Miles per hour (mph); and
 - Metres / second squared (m/s²).
- 3.5 Vehicle Types Used:
 - Cars
 - LGV
 - HGV (OGV1 & OGV2)
 - Coaches
 - Motorcycles
- 3.6 Geometric calculations for base model construction were derived from OS Master mapping in combination with high resolution aerial imagery, overlaid. A check on the accuracy of the base map was undertaken against online satellite imagery and Google Street view, and where discrepancies were identified this was accounted for in network coding within VISSIM. These calculations have informed the lane width, link length and number of lane parameters within the model.
- 3.7 The emergency stop and lane change parameters have been used to model lane change behaviour. These were determined by reviewing the physical characteristics of specific parts of the network. The values used depend on a number of factors including positioning of signing, type of junction, general visibility and proximity of other junctions. The emergency stop distance specifies the last possible position value for a vehicle to change lanes. The emergency stop value has been left at a default value of 5m except where longer queue lengths are modelled.

3.8 Results have been output with a model resolution of 10-time steps per second, as a result of the requirements of the external signal control module, PC MOVA. Random seeds used were set with a starting seed of 42, with an incremental increase of 41.

Base Data – Changes from Default Driving Behaviour Parameters

- 3.9 The base year network primarily makes use of three driver behaviour profiles:
 - 1 Urban (motorized)
 - Driver behaviour profile 1 is largely left as per the PTV default settings. As a result of previous experience and reference to TfL guidelines for urban roads, two changes have been made to the **Following** rules. As a result of the more complex set-up of physical elements within combined junctions, the number of interaction objects has been increased to 8. The number of interaction vehicles has been reduced to 4, as this is considered more realistic in an urban setting. Look ahead and look back distances have also been updated to allow for more realistic behaviour in congested conditions.
 - 2 Left-side rule (motorized)
 - Driver behaviour profile 2 is left as per the PTV default settings.
 - 7 Urban (Aggressive merge)
 - Driver behaviour profile 7 is a bespoke behaviour created to allow more aggressive merging behaviour. The template used is Driver behaviour profile 1. Changes include a decrease to the Number of interaction vehicles from 4 to 2, a reduction of average standstill distance from 2m to 1.5m, and the use of Co-operative lane change, rather than advanced merging. Maximum deceleration for co-operative braking has been increased to -9.00 m/s².

Base Data – Changes from Default Desired Speed Profiles

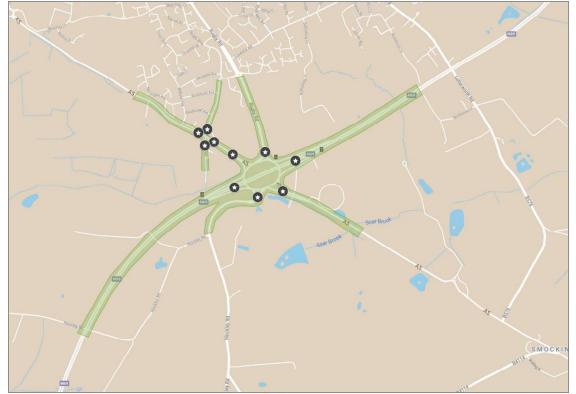
- 3.10 Distribution profiles for the 20mph, 30mph, 40mph, 50mph, National Speed Limit (NSL) Single Carriageway, NSL Dual Carriageway, and NSL motorway have been taken from the latest available DfT National Speed statistics.
- 3.11 Distribution profiles have also been created for use with Reduced Speed Area controls (RSA) on corners, as well as to control saturation flow rates at signal stop lines. Reduced Speed Areas are used throughout the model in locations where a bend is of such a radius that it will always require a motorist to brake when negotiating it. It is important to understand that a Reduced Speed Area upon a bend will actually result in a vehicle decelerating on the approach to the bend, rather than upon it.

Model Assignment

- 3.12 Although the network has no route choice, the dynamic assignment module was chosen for model assignment due to the relative ease of entering traffic flows via Origin-Destination (OD) matrices for both the base development and the addition of future year growth at a later stage.
- 3.13 To provide an accurate traffic profile, traffic OD matrices have been created per vehicle type, for each 15-minute interval, in line with the collected data. It should be

noted that although the traffic has been separated into 15-minute intervals, the model has been validated hourly for each of the two busiest hours in each peak period.

3.14 As there is no route choice in the model, there is not judged to be any need for the process of route convergence, however the path and cost files used were run at least 20 times in order to ensure stability.


4. BASE MODEL CALIBRATION

This section summarises the calibration process undertaken and identifies sources of traffic flow data used to check and refine the flow profiles within the VISSIM model.

TRAFFIC FLOW SOURCES

- 4.1 Manual Classified Count (MCC) surveys were undertaken on 10th April 2019 at the following locations:
 - M69 Junction 1
 - A5/Wolvey Road Junction
- 4.2 Link counts (10th April 2019) have been acquired from the WebTRIS database at the following site locations:
 - M69 mainline flow (3540) northbound, north of M69 Junction 1
 - M69 mainline flow (4566) southbound, north of M69 Junction 1
 - M69 mainline flow (5024) northbound, south of M69 Junction 1
 - M69 mainline flow (4189) southbound, south of M69 Junction 1

TRAFFIC FLOW CALIBRATION

- 4.3 The process of flow calibration has involved multiple iterations of minor adjustments to priority control at key locations and on key routes. The calculated GEH statistic for the observed and modelled flows was considered for each of the junction turning counts in accordance with the criteria stated in TAG Unit 3.1. To consider day to day variation in driver behaviour, the models were run, and results averaged over twenty random seeds, as per the original model specification. **Tables 1-6** summarise the flow calibration results.
- 4.4 For transparency, completeness and robustness, these results also include a comparison against the TfL criteria for key links, using a GEH value of 3 or under. It has now been possible to achieve the ideal minimum 85% count, demonstrating that a strong flow calibration result has been achieved. A full breakdown of model calibration results can be found in **Appendix A**.

Table 1: AM Flow Calibration - 0730-0830hrs

AM Peak (07:30-08:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 2: AM Flow Calibration – 0830-0930hrs

AM Peak (08:30-09:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of ∀ISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 3: AM Flow Calibration – 0730-0930hrs

AM Peak (07:30-09:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 4: PM Flow Calibration – 1630-1730hrs

PM Peak (16:30-17:30) Summary - ALL	
Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 5: PM Flow Calibration – 1730-1830hrs

PM Peak (17:30-18:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 6: PM Flow Calibration – 1630-1830hrs

PM Peak (16:30-18:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

TRAFFIC SIGNAL CALIBRATION

- 4.5 Traffic signals have been modelled using the PC MOVA emulation module. MOVA config files had been provided by HE, however it was identified that there were some compatibility issues as a result of differences between what the MOVA kernel can do, and the functions available to PC MOVA.
- 4.6 A new PC MOVA config was therefore created in order to allow full co-ordination between the three separate controllers, as is found on-site.

5. BASE MODEL VALIDATION

This section summarises the goodness of fit between modelled and observed outputs, independently collected.

VEHICLE JOURNEY TIME VALIDATION

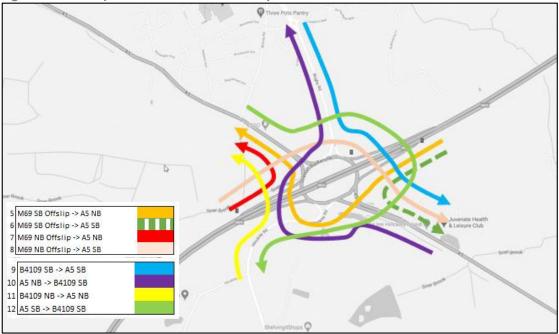

- 5.1 The journey time validation has been carried out using TomTom data collected for the network. This was chosen as it provides a high sample rate dataset which improves the overall robustness of the validation comparison.
- 5.2 The data is provided in small link sections, so these were combined into more reasonable lengths from junction to junction in the network, which assisted the calibration of the model. For the purpose of providing journey time validation, multiple sections have been combined into longer journey routes, covering all major movements at key locations.
- 5.3 A total of 12 journey time routes have been prepared for the purpose of model validation. **Figure 3** shows the location of four, primary through routes. **Figure 4** shows the location of eight secondary turning routes.

Figure 3: Journey Time Routes - Primary

JOURNEY TIME DATA

5.4 **Tables 7 and 8** below shows the overall summary for all journey time routes and sections for the network. See **Appendix B** for more detailed tables for each route.

Whole Routes	AM Peak			
Criteria	07:30-08:30	08:30-09:30	07:30-09:30	
85% of measures within 15%	83%	100%	92%	
85% of measures within 60 seconds	100%	100%	100%	

Table 8: PM Journey Time Validation

Whole Routes	PM Peak		
Criteria	16:30 - 17:30	17:30 - 18:30	16:30-18:30
85% of measures within 15%	100%	83%	100%
85% of measures within 60 seconds	100%	100%	100%

- 5.5 In accordance with TAG Unit 3.1 criteria, which recommends that the difference between observed and modelled journey times should be within 15% (or 1 minute if higher) for at least 85% of the routes evaluated (although that criteria is ideally designed for route sections over 3km and under 15km in length) it can be seen from **Tables 7 and 8** that all routes meet one or both criteria in the AM and PM peak models.
- 5.6 In the AM peak, the 0830-0930hrs and 0730-0930hrs time periods both meet the TAG criteria, with over 85% of the routes being within 15% and 60s. In the 0730-0830hrs time period, there are two routes which fall outside of the 15% difference (one having a 16% difference) and 12/12 routes are within 60s. Given how close the non-validating route is to 15% difference, the model is still considered representative of on-street conditions.

- 5.7 In the PM peak, 12/12 routes are within 15% and 60s for the 1630-1730hrs and 1630-1830hrs time periods. In the 1730-1830hrs time period, there are two routes which fall outside of the 15% difference (the two routes having an 18% and 20% difference) and 12/12 routes are within 60s. Given how close the non-validating routes are to 15% difference, the model is still considered representative of on-street conditions.
- 5.8 Overall, this is a robust validation result, indicative of a good likeness between modelled performance and on-street conditions.

6. SUMMARY AND CONCLUSIONS

SUMMARY

- 6.1 This LMVR documents the development of the base model and demonstrates that it is an acceptable representation of the highway network within the study area and is fit for the purpose of developing traffic forecasts to assess the impact of development proposal scheme on the M69 Junction 1 gyratory.
- 6.2 The purpose of model calibration is to ensure that the model assignments are appropriate. The main emphasis of the calibration is to ensure that the model accurately reflects existing conditions during the modelling period with regard to:
 - Traffic patterns;
 - Key junctions; and
 - Traffic volumes and routing.
- 6.3 In regard to the traffic turning and flow counts at the surveyed sites the model exceeds the 85% criteria set by TAG Unit 3.1.
- 6.4 The model has been validated to observed journey times within the extents of the network. The data has been provided as 15-minute intervals and an average one-hour journey time for each of the peak network periods.
- 6.5 The journey time comparisons show consistency between the modelled and observed journey time profiles across the majority of the journey time routes. In the AM and PM peaks, there are two routes which fall outside of the 15% range (0730-08hrs and 1730-1830hrs). However, all of the routes are within 60s and as such, the journey times are considered representative.
- 6.6 Given that the traffic flows and journey times compare well with on-site conditions, it should be considered a successful calibration and validation exercise.

CONCLUSION

6.7 It is understood that as these conditions are met and are of a sufficient quality to represent real world conditions the M69 Junction 1 gyratory VISSIM model is considered robust and acceptable for testing of the proposed development.

APPENDICES

APPENDIX 1: Flow Calibration

PM Peak (16:30-17:30) Summary - Al	
Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.003
VISSIM model counts with GEH <5	4
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH < 10	42
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.005

PM Peak (17:30-18:30) Summary - ALL	
Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <6	42
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

THENETY TO ADDATE TO ADDAT

		Exit/movement	Observed	Modelled	Actual				Pass			
		M69 Eastbound	62	63	1		Y	0.13	•	•		
		A5 Southbound	129	127	-2	-2%	Y	0.18	•	•		
	B4109 Rugby Road	B4109 Hinckley Road	138	134	-4	-3%	Y	0.34	•	•		
		M69 Westbound	206	198	-8	-4%	Y	0.56	•	•		
		A5 Northbound	14	14	0	0%	Y	0.00	•	•		
		A5 Southbound	40	40	0		Y	0.00	•	•		
		B4109 Hinckley Road	203	204	1	3%	Y	0.09	•			
	M69 Westbound	M69 Westbound	1645	1646	1	1%	Y	0.03				
		AS Northbound	206	201	-5	0%	Y	0.17	•	•		
		B4109 Rugby Road	84	83	-1	-1%	Y	0.09				
		B4109 Hinckley Road	7	7	0		Y	0.00	•	•		
		M69 Westbound	135	138	3	2%	Y	0.26	•			
	A5 Northbound	A5 Northbound	410	403	-7	-2%	Y	0.35		. •		
		B4109 Rugby Road	209	210	1	0%	Y	0.07	•			
M69 Junction 1		M69 Eastbound	28	28	0	0%	Y	0.00	•			
NOD JUNCTON 1		M69 Westbound	19	19	0		Y	0.00				
		A5 Northbound	102	103	1	1%	Y	0.10				
	B4109 Hinckley Road	B4109 Rugby Road	196	197	1	1%	Y	0.07	•			
		M69 Eastbound	111	111	0	0%	Y	0.00	•	•		
		A5 Southbound	5	5	0	0%	Y	0.00	•	•		
		A5 Northbound	325	318	-7	-2%	Y	0.39				
		B4109 Rugby Road	670	660	-10	-1%	Y	0.39	•			
	M69 Eastbound	M69 Eastbound	2369	2380	11	0%	Y	0.23	•	•		
		A5 Southbound	360	346	-14	-4%	Y	0.75	•	•		
		B4109 Hinckley Road	20	20	0	0%	Y	0.00	•			
		B4109 Rugby Road	20	20	0	0%	Y	0.00	•	•		
		M69 Eastbound	254	255	1	0%	Y	0.05	•	. •		
	A5 Southbound	A5 Southbound	524	510	-14	-3%	Y	0.62	•	•		
		B4109 Hinckley Road	46	44	-2	-4%	Y	0.30	•	•		
		M69 Westbound	270	264	-6	-2%	Y	0.37	•	•		
		A5 Watling Street Eastbound	30	27	-3	-10%	Y	0.56	•	•		
	Wolvey Road Southbound	Wolvey Road Southbound	0	D	0		N	0.00	•	•		
		A5 Watling Street Westbound	19	19	0	0%	Y	0.00	•	•		
		Wolvey Road Southbound	0	0	0		Y	0.00	•			
	A5 Watling Street Westbound	A5 Watling Street Westbound	943	987	44	5%	Y	1.42	•	•		
5/Wolvey Road		Wolvey Road Northbound	53	55	2	4%	Y	0.27				
to, workey house		A5 Watling Street Westbound	0	0	0		N	0.00	•	•		
	Wolvey Road Northbound	Wolvey Road Northbound	0	D	0		N	0.00	•	•		
		A5 Watling Street Eastbound	0	0	0		N	0.00	•			
		Wolvey Road Northbound	174	171	-3	-2%	Y	0.23				
	A5 Watling Street Eastbound	A5 Watling Street Eastbound	1071	1076	5		Y	0.15	•	•	1.1	
		A5 Watling Street Westbound	0	0	0		Y	0.00				
	PM	PM Peak (16:30-17:30) Summary - LIGHTS										
	Total number of counts considered											
	VISSIM model counts with GEH	42										
		% of VISSIM counts with GEH <3										
		-				_						

ce GEH Criteria Met

100 42

			Junction/	Movement	Vehi	le Flow	Diffe	rence	GEH Cri	teria M	et	F	Flow C
	TIMEINT	Junction								GEH	Pass		<700
	5400-9000		1	M69 Eastbound	55	54	-1	-2%	N	0.14	•	•	
	5400-9000			A5 Southbound	106	109	3	3%	N	0.29		•	-
_	5400-9000		B4109 Rugby Road	84109 Hinckley Road	101	105	4	4%	N	0.39	•	•	
	5400-9000			M69 Westbound	181	165	-16	-9%	N	1.22	•	•	-
-	5400-9000			A5 Northbound	18	17	-1	-6%	N	0.24	•	•	-
	5400-9000			A5 Southbound	24	25	1	4%	N	0.20		•	-
-	5400-9000			84109 Hinckley Road	174	176	2	1%	N	0.15	•	•	-
	5400-9000		M69 Westbound	M69 Westbound	1507	1509	2	0%	N	0.05	•	•	
_	5400-9000			A5 Northbound	250	253	3	1%	N	0.19	•	•	-
	5400-9000			84109 Rugby Road	95	95	0	0%	N	0.00		•	-
-	5400-9000			84109 Hinckley Road	8	8	0	0%	N	0.00	•		-
	5400-9000			M69 Westbound	130	129	-1	-1%	N	0.09		•	-
-	5400-9000		AS Northbound	A5 Northbound	377	363	-14	-4%	N	0.75			-
-	5400-9000		no no no ono	B4109 Rugby Road	196	192	-14	-2%	N	0.29			-
-	5400-9000			M59 Fastbound	196	152	1	6%	N	0.25			-
-	5400-9000	M69 Junction 1		M69 Westbound	10	- 1/	0	0%	N	0.00			-
_				A5 Northbound		90	0	0%	N	0.00			-
-	5400-9000		84109 Hinckley Road		90 177		2	1%	N				-
	5400-9000		B4109 Hinckley Koad	B4109 Rugby Road		179		1%	N	0.15	•		-
_	5400-9000			M69 Eastbound	70	74	4			0.47	•		<u> </u>
	5400-9000			A5 Southbound	9	9	0	0%	N	0.00		:	-
_	5400-9000			A5 Northbound	422	425	3	1%	N	0.15	•		-
	5400-9000			84109 Rugby Road	588	602	14	2%	N	0.57	•	•	-
	5400-9000		M69 Eastbound	M69 Eastbound	2147	2150	3	0%	N	0.06	•		
	5400-9000			A5 Southbound	321	336	15	5%	N	0.83	•	•	-
_	5400-9000			B4109 Hinckley Road	14	14	0	0%	N	0.00	•	•	
	5400-9000			B4109 Rugby Road	12	12	0	0%	N	0.00		•	
	5400-9000			M69 Eastbound	202	203	1	0%	N	0.07	•	•	
	5400-9000		A5 Southbound	A5 Southbound	382	395	13	3%	N	0.66	•	•	
	5400-9000			84109 Hinckley Road	40	32	-8	-20%	N	1.33		•	
	5400-9000			M69 Westbound	203	206	3	1%	N	0.21		•	
	5400-9000			A5 Watling Street Eastbound	22	22	0	0%	Ŷ	0.00		•	
	5400-9000		Wolvey Road Southbound	Wolvey Road Southbound	1	1	0	0%	N	0.00	•	•	
	5400-9000			A5 Watling Street Westbound	22	22	0	0%	Y	0.00	•	•	
	5400-9000			Wolvey Road Southbound	1	0	-1	-100%	Ŷ	1.41	•	•	
	5400-9000		A5 Watling Street Westbound	A5 Watling Street Westbound	1087	1108	21	2%	Ý	0.63	•	•	
	5400-9000	AS/Wolvey Road		Wolvey Road Northbound	40	36	-4	-10%	Y	0.65	•	•	
	5400-9000	AS/ WOIVEY ROad		A5 Watling Street Westbound	1	1	0	0%	N	0.00	•	•	
	5400-9000		Wolvey Road Northbound	Wolvey Road Northbound	D	0	0		N	0.00	•	•	
	5400-9000			A5 Watling Street Eastbound	1	0	-1	-100%	N	1.41	•	•	
	5400-9000			Wolvey Road Northbound	126	126	0	0%	Y	0.00	•	•	
-	5400-9000		A5 Watling Street Eastbound	A5 Watling Street Eastbound	796	807	11	1%	Y	0.39	•	•	
	5400-9000			A5 Watling Street Westbound	D	0	0		Y	0.00	•	•	
			PM	Peak (17:30-18:30) St	ummary	- LIGHTS	3						
			Total number of counts consider	M.					42				

PM Peak (17:30-18:30) Summary - LIGHTS	
Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

THANKIT SALES AND SALES AN

VISSIM model counts with GEH <5 % of VISSIM counts with GEH <5 VISSIM model counts with GEH <10 % of VISSIM counts with GEH <10

VISSIM model counts meeting WebTAG Unit 3.1 d % of VISSIM counts meeting WebTAG Unit 3.1 flo

AS V	Junction/	Movement	Vehicle Flow		Difference		GEH Cri	let		Flow Criteria Met			
	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 2700	>2700
		M69 Eastbound	61	62	1	2%	Y	0.13	•	•			
		A5 Southbound	127	126	-1	-1%	Y	0.09		•			
	B4109 Rugby Road	B4109 Hinckley Road	136	132	-4	-3%	Y	0.35	٠	•			
		M69 Westbound	205	197	-8	-4%	Y	0.56	•	•			
		AS Northbound	14	14	0	0%	Y	0.00	•	•			
		A5 Southbound	34	34	0	0%	Y	0.00		•			
		B4109 Hinckley Road	198	199	1	1%	Y	0.07	•	•			
	M69 Westbound	M69 Westbound	1501	1502	1	0%	Y	0.03	•	•			
		AS Northbound	193	191	-2	-1%	Y	0.14	•				
		B4109 Rugby Road	83	83	0	0%	Y	0.00	•	•			
		B4109 Hinckley Road	7	7	0	0%	Y	0.00	•	•			
		M69 Westbound	126	129	3	2%	Y	0.27	•	•			
	A5 Northbound	A5 Northbound	345	346	1	0%	Y	0.05	•	•			
		B4109 Rugby Road	204	205	1	0%	Y	0.07	•				
OP Approach Approach B4109 Rugby Road ME9 Westbound ME9 Westbound tion 1 B4109 Hinckley Road ME9 Eastbound ME9 Eastbound A5 Southbound A5 Southbound Velvey Road Southbound A5 Watling Street Westbourd		M69 Eastbound	27	26	-1	-4%	Y	0.19	•	•			
setion 1		M69 Westbound	19	19	0	0%	Y	0.00	•	•			
		A5 Northbound	100	101	1	1%	Y	0.10	•	•			
	B4109 Hinckley Road	B4109 Rugby Road	195	196	1	1%	Y	0.07	•	•			
Approach Approach B4109 Rugby Road M69 Westbound A3 Northbound B4109 Hinkley Road M69 Eastbound M69 Eastbound M69 Eastbound A5 Southbound A5 Southbound A5 Southbound A5 Southbound A5 Southbound	M69 Eastbound	110	110	0	0%	Y	0.00	•	•				
		A5 Southbound	5	5	0	0%	Y	0.00		•			
		A5 Northbound	299	299	0	0%	Y	0.00	•	•			
		B4109 Rugby Road	668	659	-9	-1%	Y	0.35		•			
	M69 Eastbound	M69 Eastbound	2206	2217	11	0%	Y	0.23	•				
		A5 Southbound	341	327	-14	-4%	Y	0.77	•	•			
Approach Approach B4103 Rugby Road M69 Westbound A5 Northbound B4109 Hinkley Road M69 Eastbound M69 Eastbound M69 Eastbound M69 Eastbound M69 Eastbound M69 Eastbound A5 Southbound M69 Eastbound M69 Eastbound A5 Wating Street Westbourd	B4109 Hinckley Road	19	19	0	0%	Y	0.00	•	•				
		B4109 Rugby Road	20	20	0	0%	Y	0.00	•				
		M69 Eastbound	240	241	1	0%	Y	0.06	•	•			
	A5 Southbound	A5 Southbound	481	467	-14	-3%	Y	0.64					
		B4109 Hinckley Road	44	42	-2	-5%	Y	0.30	•	•			
Phi Approach Approach B4109 Rugby Road B4109 Rugby Road M69 Westbound B4109 Hinkley Road B4109 Hinkley Road M69 Eastbound M69 Eastbound A5 Southbound A5 Southbound A5 Southbound A5 Southbound A5 Wating Street Westbound A5 Wating Street Westbound	M69 Westbound	251	245	-6	-2%	Y	0.38	•	•				
		A5 Watling Street Eastbound	28	25	-3	-11%	Y	0.58	•	•			
	Wolvey Road Southbound	Wolvey Road Southbound	0	0	0		N	0.00	•				
		A5 Watling Street Westbound	18	19	1	6%	Y	0.23	•	•			
		Wolvey Road Southbound	0	0	0		Y	0.00	•				
	AS Watling Street Westbound	A5 Watling Street Westbound	837	899	62	7%	Y	2.10	•	•			
Road		Wolvey Road Northbound	52	55	3	6%	Y	0.41	•	•			
		A5 Watling Street Westbound	0	0	0		N	0.00	•	•			
	Wolvey Road Northbound	Wolvey Road Northbound	0	0	0		N	0.00					
		A5 Watling Street Eastbound	0	D	0		N	0.00	•	•			
		Wolvey Road Northbound	172	169	-3	-2%	Y	0.23	•	•			
	A5 Watling Street Eastbound	A5 Watling Street Eastbound	997	1000	3	0%	Y	0.09	•	•			
		AS Watling Street Westbound	0	0	0		Y	0.00	•	•			

	Junction/	Movement	Vehi	le Flow	Diffe	rence	GEH Cri	teria N	het .	F	low Cri	teria M	ət
	Approach	Exit/movement	Observed	Modelled	Actual	*	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
		M69 Eastbound	53	52	-1	-2%	N	0.14	•	•			
		A5 Southbound	103	106	3	3%	N	0.29	•	•			
	B4109 Rugby Road	B4109 Hinckley Road	100	103	3	3%	N	0.30	•	•			
		M69 Westbound	179	163	-16	-9%	N	1.22		•			
		A5 Northbound	17	16	-1	-6%	N	0.25	•	•			
		A5 Southbound	23	24	1	4%	N	0.21	•	•			
		84109 Hinckley Road	171	173	2	1%	N	0.15	•	•			
	M69 Westbound	M69 Westbound	1339	1340	1	0%	N	0.03		•			
		A5 Northbound	231	232	1	0%	N	0.07	•	•			
		B4109 Rugby Road	94	94	0	0%	N	0.00		•			
		84109 Hinckley Road	7	7	0	0%	N	0.00	•	•			
		M69 Westbound	116	114	-2	-2%	N	0.19		•			
	A5 Northbound	A5 Northbound	334	315	-19	-6%	N	1.05		•			
		84109 Rugby Road	196	192	-4	-2%	N	0.29		•			
M69 Junction 1		M69 Eastbound	16	17	1	6%	N	0.25	•	•			
mos sancaon a		M69 Westbound	8	8	0	0%	N	0.00	•	•			
		A5 Northbound	86	86	0	0%	N	0.00	•	•			
	84109 Hinckley Road	B4109 Rugby Road	176	178	2	1%	N	0.15		•			
		M69 Eastbound	69	72	3	4%	N	0.36	•	•			
		A5 Southbound	8	8	0	σ%	N	0.00	•	•			
		A5 Northbound	382	379	-3	-1%	N	0.15		•			
		B4109 Rugby Road	585	600	15	3%	N	0.62		•			
	M69 Eastbound	M69 Eastbound	2012	2014	2	0%	N	0.04		•	1.1		
		A5 Southbound	306	321	15	5%	N	0.85	•	•			
		84109 Hinckley Road	14	14	0	0%	N	0.00	•	•			
		84109 Rugby Road	12	12	0	0%	N	0.00		•			
		M69 Eastbound	184	186	2	1%	N	0.15		•			
	A5 Southbound	A5 Southbound	334	348	14	4%	N	0.76	•	•			
		84109 Hinckley Road	40	32	-8	-20%	N	1.33	•	•			_
		M69 Westbound	192	195	3	Z%	N	0.22	•	•			
		A5 Watling Street Eastbound	22	22	0	0%	Ŷ	0.00		•			
	Wolvey Road Southbound	Wolvey Road Southbound	1	1	0	0%	N	0.00	•				
		A5 Watling Street Westbound	22	22	0	0%	Ŷ	0.00	•	•			
		Wolvey Road Southbound	1	0	-1	-100%	Ŷ	1.41		•			
	AS Watling Street Westbound	A5 Watling Street Westbound	979	988	9	1%	Ŷ	0.29	•	•	1.1		_
AS/Wolvey Road		Wolvey Road Northbound	39	36	-3	-8%	Ŷ	0.49					
,		A5 Watling Street Westbound	1	1	0	0%	N	0.00					_
	Wolvey Road Northbound	Wolvey Road Northbound	0	0	0	-	N	0.00		•			
		A5 Watling Street Eastbound	1	0	-1	-100%	N	1.41	•	•			_
		Wolvey Road Northbound	125	125	0	0%	Ý	0.00		•			
	A5 Watling Street Eastbound	A5 Watling Street Eastbound	720	732	12	2%	Ŷ	0.45		•	1.1		_
		A5 Watling Street Westbound	0	0	0		Y	0.00		•			

PM Peak (16:30-17:30) Summary - HEA	/IES
tal number of counts considered	42
SSIM model counts with GEH <3	42
of VISSIM counts with GEH <3	100.00%
SSIM model counts with GEH <5	42
of VISSIM counts with GEH <5	100.00%
SSIM model counts with GEH <10	42
of VISSIM counts with GEH <10	100.00%
SSIM model counts meeting WebTAG Unit 3.1 criteria	42
of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%


THANENT TANKING TANKIN

M69 Juni

.5/Wolw

T 01 VIS % 0 VIS % 0 VIS % 0

	Junction/	Movement	Vehic	le Flow	Diffe	rence	GEH Cri	iteria M	et		Flow Ci	riteria M	et
tion -	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 - 2700	>2700
		M69 Eastbound	1	1	0	0%	Y	0.00	•	•			
		A5 Southbound	2	1	-1	-50%	Y	0.82					
	B4109 Rugby Road	B4109 Hinckley Road	2	2	0	0%	Y	0.00		•			
		M69 Westbound	1	1	0	0%	Y	0.00					
_ L		A5 Northbound	0	0	0		Y	0.00	•	•			
- [AS Southbound	6	6	0	0%	Y	0.00		•			
		B4109 Hinckley Road	5	5	0	0%	Y	0.00		•			
	M69 Westbound	M69 Westbound	144	144	0	0%	Y	0.00		•			
		A5 Northbound	13	10	-3	-23%	Y	0.88	•	•			
		B4109 Rugby Road	1	0	-1	-100%	Y	1.41		•			
- [B4109 Hinckley Road	0	D	0		Y	0.00		•			
		M69 Westbound	9	9	0	0%	Y	0.00	•	•			
	A5 Northbound	A5 Northbound	65	57	-8	-12%	Y	1.02	•	•			
		B4109 Rugby Road	5	5	0	0%	Y	0.00	٠				
.		M69 Eastbound	1	2	1	100%	Y	0.82	•	•			
		M69 Westbound	0	D	0		Y	0.00		•			
	A5 Northbound	2	2	Ó	0%	Y	0.00	•	•				
	B4109 Rugby Road	1	1	0	0%	Y	0.00		•				
	M69 Eastbound	1	1	0	0%	Y	0.00	•	•				
	A5 Southbound	0	0	0		Y	0.00	•	•				
	A5 Northbound	26	19	-7	-27%	Y	1.48	•	•				
		B4109 Rugby Road	2	1	-1	-50%	Y	0.82	•	•			
I	M69 Eastbound	M69 Eastbound	163	163	0	0%	Y	0.00	•	•			
L		A5 Southbound	19	19	0	0%	Y	0.00		•			
I		B4109 Hinckley Road	1	1	0	056	Y	0.00	•	•			
ŀ		B4109 Rugby Road	0	0	0		Y	0.00	•	•			
n 1 B4109 Hindley Read MK9 Eartbound A5 Southbound Wolvey Road Southbound	M69 Eastbound	14	14	0	0%	Y	0.00	•	•				
	A5 Southbound	43	43	0	0%	Y	0.00		•				
		B4109 Hinckley Road	2	2	0	0%	Ŷ	0.00		•			
M69 Westbound A5 Northbound B4109 Hinstley Koad M69 Eastbound A5 Southbound Wolvey Road Southbound	M69 Westbound	19	19	0	0%	Y	0.00	•	•				
+		AS Watling Street Eastbound	2	2	0	0%	Y	0.00	•	•			
	Wolvey Road Southbound	Wolvey Road Southbound	0	0	0		N	0.00	•	•			
		A5 Watling Street Westbound	1	0	-1	-100%	Y	1.41		•			
Ŀ		Wolvey Road Southbound	0	0	0		Y	0.00					
	AS Watling Street Westhound	A5 Watling Street Westbound	106	88	-18	-17%	Ŷ	1.83		•			
	Wolvey Road Northbound	100	0	-1	-100%	Y	1.41						
id -		A5 Watling Street Westbound	0	0	0		N	0.00					
	Wolvey Road Northbound	Wolvey Road Northbound	0	0	0		N	0.00					
	Hore Hore Hore Hore Hore	A5 Watling Street Eastbound	0	0	0	-	N	0.00	÷.				
ŀ		Wolvey Road Northbound	2	2	0	- 0%	Y	0.00					
	AS Watling Street Easthound	A5 Watling Street Eastbound	74	76	2	3%	Y	0.00					
	no manny screet castoound	A5 Watling Street Westbound	/4	0	0	370	v v	0.23					

	Junction/	Vehicle Flow		Difference		GEH Cri	EH Criteria Met		F	low Cri	teria M	20	
	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 - 2700	>2700
		M69 Eastbound	2	2	0	0%	Ŷ	0.00	•	•			
		A5 Southbound	3	3	0	0%	Y	0.00	•	•			
	B4109 Rugby Road	B4109 Hinckley Road	1	2	1	100%	Υ	0.82	•	•			
		M69 Westbound	2	2	0	0%	Y	0.00	•	•			
		A5 Northbound	1	1	0	0%	Ŷ	0.00	•	•			
		A5 Southbound	1	1	0		Y	0.00	•	•			
		B4109 Hinckley Road	3	3	0	0%	Υ	0.00	•	•			
	M69 Westbound	M69 Westbound	168	169	1		Y	0.08	•	•			
		A5 Northbound	19	21	2		Ŷ	0.45	•	•			
		B4109 Rugby Road	1	1	0	0%	Υ	0.00		•			
		84109 Hinckley Road	1	1	0	0%	Y	0.00	•	•			
		M69 Westbound	14	15	1	7%	Y	0.26	•	•			
	AS Northbound	A5 Northbound	43	48	5	12%	Ŷ	0.74	•	•			
		B4109 Rugby Road	D	0	0		Ŷ	0.00	•	•			
M69 Junction 1		M69 Eastbound	0	0	0		Y	0.00	•	•			
M69 Junction 1		M59 Westbound	0	0	0		Y	0.00	•	•			
	B4109 Hinckley Road	A5 Northbound	4	4	0	0%	Ŷ	0.00	•	•			
		84109 Rugby Road	1	1	0	0%	Ŷ	0.00	•	•			
		M69 Eastbound	1	2	1	100%	Y	0.82	•	•			
		A5 Southbound	1	1	0	0%	Y	0.00	•	•			
		A5 Northbound	40	46	6	15%	γ	0.91	•	•			
		B4109 Rugby Road	3	2	-1	-33%	Ŷ	0.63	•	•			
	M69 Eastbound	M69 Eastbound	135	136	1	1%	Y	0.09	•	•			
		A5 Southbound	15	15	0	0%	Y	0.00	•	•			
		84109 Hinckley Road	0	0	0		Ŷ	0.00	•	•			
		B4109 Rugby Road	0	0	0		Ŷ	0.00	•	•			
		M69 Eastbound	18	17	-1	-6%	Ŷ	0.24	•	•			
	A5 Southbound	A5 Southbound	48	47	-1	-2%	Y	0.15	•	•			
		84109 Hinckley Road	0	0	0		Ŷ	0.00	•	•			
		M69 Westbound	11	11	0	0%	Y	0.00	•	•			
		A5 Watling Street Eastbound	0	0	0		Ŷ	0.00	•	•			
	Wolvey Road Southbound	Wolvey Road Southbound	0	0	0		N	0.00	•	•			
		A5 Watling Street Westbound	0	0	0		Ŷ	0.00	•	•			
		Wolvey Road Southbound	0	0	0		Y	0.00	•	•			
	A5 Watling Street Westbound	A5 Watling Street Westbound	108	120	12	11%	Ŷ	1.12	•	•			
S/Wolvey Road		Wolvey Road Northbound	1	0	-1	-100%	Ŷ	1.41	•	•			
col anomals Road		A5 Watling Street Westbound	0	0	0		N	0.00	•	•			
	Wolvey Road Northbound	Wolvey Road Northbound	0	0	0		N	0.00	•	•			
		A5 Watling Street Eastbound	0	0	0		N	0.00	•	•			
		Wolvey Road Northbound	1	1	0	0%	Ŷ	0.00	•	•			
	A5 Watling Street Eastbound	A5 Watling Street Eastbound	76	75	-1	-1%	Ŷ	0.12	•	•			
		A5 Watling Street Westbound	0	0	Ô		Ŷ	0.00	•	•			

L

PM Peak (16:30-18:30) Summary - A	LL
Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	47
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 - 2700	>270
		M69 Eastbound	117	117	0		N	0.00	•	•			
		A5 Southbound	235	236	1	0%	N	0.07	•	•			
	B4109 Rugby Road	84109 Hinckley Road	239	239	0	0%	N	0.00	•	•			
		M69 Westbound	387	363	-24	-6%	N	1.24	•	•			
		A5 Northbound	32	31	-1	-3%	N	0.18	•	•			
		A5 Southbound	64	65	1	2%	N	0.13	•	•			
		84109 Hinckley Road	377	380	3	1%	N	0.16	•	•			
	M69 Westbound	M69 Westbound	3152	3155	3	0%	N	0.05	•	•			
		A5 Northbound	456	454	-2	0%	N	0.10	•	•			
		84109 Rugby Road	179	178	-1	-1%	N	0.08	•	•			
		84109 Hinckley Road	15	15	0	0%	N	0.00	•	•			
		M69 Westbound	265	267	2	1%	N	0.13	•	•			
	A5 Northbound	A5 Northbound	787	766	-21	-3%	N	0.78	•	•			
		84109 Rugby Road	405	402	-3	-1%	N	0.15	•	•			
		M69 Eastbound	44	45	1	2%	N	0.15	•	•			-
M69 Junction 1	84109 Hinckley Road	M69 Westbound	27	27	0	0%	N	0.00	•	•			
		A5 Northbound	192	193	1	1%	N	0.07	•	•			-
		84109 Rugby Road	373	376	3	1%	N	0.16	•	•			-
		M69 Eastbound	181	185	4	2%	N	0.30	•	•	-		-
		A5 Southbound	14	14	0	0%	N	0.00		•			-
		A5 Northbound	747	743	-4	-1%	N	0.15	•	•			-
		84109 Rugby Road	1258	1262	4	0%	N	0.11	•	•			
	M69 Eastbound	M69 Eastbound	4516	4530	14	0%	N	0.21	•	•			
		A5 Southbound	681	682	1	0%	N	0.04	•	•			-
		84109 Hinckley Road	34	34	ō	0%	N	0.00	•	•			-
		84109 Rugby Road	32	32	ŏ	0%	N	0.00	•	•			-
		M69 Eastbound	456	458	2	0%	N	0.09	•	•	-	-	-
	A5 Southbound	A5 Southbound	906	905	-1	0%	N	0.03	•				-
		84109 Hinckley Road	86	76	-10	-12%	N	1.11			-	-	-
		M69 Westbound	473	470	-3	-1%	N	0.14					-
		A5 Watling Street Eastbound	52	470	-3	-1/4	Y	0.42			-	-	-
	Wolvey Road Southbound	Wolvey Road Southbound	1	1	0	0%	N	0.00					-
	field bounded and	A5 Watling Street Westbound	41	41	0	0%	Y	0.00		•	-	-	-
		Wolvey Road Southbound	1		-1	-100%	Y	1.41				-	-
	A5 Watling Street Westbound	A5 Watling Street Westbound	2030	2095	65	3%	Y	1.43					-
	AS Wating Street Westboard	Wolvey Road Northbound	2050	2095	-2	-2%	Y	0.21					-
45/Wolvey Road		A5 Watling Street Westbound	95	1	-2	-2%	N	0.00					-
	Wolvey Road Northbound	Wolvey Road Northbound	0	0	0	0%	N	0.00			-	-	+
	worvey road Northboard	A5 Watling Street Eastbound	1	0	-1	-100%	N	1.41					-
			300	297	-1	-100%	Y	0.17			-	-	+
	A5 Watling Street Eastbound	Wolvey Road Northbound	1867	297	-3	-1%	Y Y	0.17					-
	Ap waving sheet Eastoound	A5 Watling Street Eastbound					Y Y					-	+
	AS	A5 Watling Street Westbound	D	0	0			0.00					

PM Peak (16:30-18:30) Summary - LIGHTS	
Total number of counts considered	4
VISSIM model counts with GEH <3	4
% of VISSIM counts with GEH <3	100.00
VISSIM model counts with GEH <5	4
% of VISSIM counts with GEH <5	100.00
VISSIM model counts with GEH <10	4
% of VISSIM counts with GEH <10	100.00
VISSIM model counts meeting WebTAG Unit 3.1 criteria	4
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00

	Junction/ Movement			Vehicle Flow		rence	GEH Criteria Met			Flow Criteria Met			et
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 - 2700	>2700
		M69 Eastbound	114	114	0		N	0.00	•	•			
		A5 Southbound	230	232	2	1%	N	0.13	•	•			
	B4109 Rugby Road	84109 Hinckley Road	236	235	-1	0%	N	0.07	•	•			
		M69 Westbound	384	360	-24	-6%	N	1.24	•	•			
		A5 Northbound	31	30	-1	-3%	N	0.18	•	•			
		A5 Southbound	57	58	1	2%	N	0.13	•	•			
		84109 Hinckley Road	369	372	3	1%	N	0.16	•	•			
	M69 Westbound	M69 Westbound	2840	2842	2	0%	N	0.04	•	•			
		A5 Northbound	424	423	-1	0%	N	0.05	•	•			
		84109 Rugby Road	177	177	0	0%	N	0.00	•	•			
		84109 Hinckley Road	14	14	0	0%	N	0.00	•	•			
		M69 Westbound	242	243	1	0%	N	0.06	•	•			
	A5 Northbound	A5 Northbound	679	661	-18	-3%	N	0.70	•	•			
		84109 Rugby Road	400	397	-3	-1%	N	0.15		•			
M69 Junction 1		M69 Eastbound	43	43	0	0%	N	0.00	•	•			
mos senecion 2		M69 Westbound	27	27	0	0%	N	0.00	•	•			
		A5 Northbound	186	187	1	1%	N	0.07	•	•			
	84109 Hinckley Road	B4109 Rugby Road	371	374	3	1%	N	0.16		•			
		M69 Eastbound	179	182	3	2%	N	0.22	•	•			
		A5 Southbound	13	13	0	0%	N	0.00	•	•			
		A5 Northbound	681	678	-3	0%	N	0.12	•	•			
		84109 Rugby Road	1253	1259	6	0%	N	0.17		•			
	M69 Eastbound	M69 Eastbound	4218	4231	13	0%	N	0.20	•	•			
		A5 Southbound	647	648	1	0%	N	0.04	•	•			
		84109 Hinckley Road	33	33	0	0%	N	0.00	•	•			
		84109 Rugby Road	32	32	0	0%	N	0.00	•	•			
		M69 Eastbound	424	427	3	1%	N	0.15	•	•			
	AS Southbound	A5 Southbound	815	815	0	0%	N	0.00	•	•			
		84109 Hinckley Road	84	74	-10	-12%	N	1.13	•	•			
		M69 Westbound	443	440	-3	-1%	N	0.14	•	•			
		A5 Watling Street Eastbound	50	47	-3	-6%	Y	0.43	•	•			
	Wolvey Road Southbound	Wolvey Road Southbound	1	1	0	0%	N	0.00	•	•			
		A5 Watling Street Westbound	40	41	1	3%	Y	0.16	•	•			
		Wolvey Road Southbound	1	0	-1	-100%	Y	1.41	•	•			
	AS Watling Street Westbound	A5 Watling Street Westbound	1816	1887	71	4%	Y	1.65	•	•			
A5/Wolvey Road		Wolvey Road Northbound	91	91	0	0%	Y	0.00	•	•			
NOV WOIVEY ROad		A5 Watling Street Westbound	1	1	0	0%	N	0.00	•	•			
	Wolvey Road Northbound	Wolvey Road Northbound	0	0	0		N	0.00	•	•			
		A5 Watling Street Eastbound	1	0	-1	-100%	N	1.41	•	•			
		Wolvey Road Northbound	297	294	-3	-1%	Y	0.17		•			
	A5 Watling Street Eastbound	A5 Watling Street Eastbound	1717	1732	15	1%	Y	0.36	•	•			
		A5 Watling Street Westbound	0	0	0		Y	0.00		•			

PM Peak (16:30-18:30) Summary - HEA	VIES
Total number of counts considered	4
VISSIM model counts with GEH <3	4
% of VISSIM counts with GEH <3	100.00
VISSIM model counts with GEH <5	4
% of VISSIM counts with GEH <5	100.00
V[SS]M mode] counts with GEH <10	4
% of VISSIM counts with GEH <10	100.00
VISSIM model counts meeting WebTAG Unit 3,1 criteria	4
IV of VARABLE as wells are store (Mark 74 C) Link 7.4 Alexandratic	

	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 - 2700	>2700
		M69 Eastbound	3	3	0	0%	γ	0.00	•	•			
		A5 Southbound	5	4	-1	-20%	Y	0.47		•			
	B4109 Rugby Road	B4109 Hinckley Road	3	4	1	33%	Ŷ	0.53		•			
		M69 Westbound	3	3	0	0%	Y	0.00	•	•			
		A5 Northbound	1	1	0	0%	Ŷ	0.00	•	•			
		AS Southbound	7		0	0%	Ŷ	0.00		•			
		84109 Hinckley Road	8	8	0	0%	Υ	0.00					
	M69 Westbound	M69 Westbound	312	313	1	0%	Y	0.06	•	•			
		A5 Northbound	32	31	-1	-3%	Ŷ	0.18	•	•			
		B4109 Rugby Road	2	1	-1	-50%	Y	0.82	•	•			
		84109 Hinckley Road	1	1	0	0%	Y	0.00	•	•			
		M69 Westbound	23	24	1	4%	Y	0.21	•	•			
	AS Northbound	A5 Northbound	108	105	-3	-3%	Y	0.29	•	•			
		84109 Rugby Road	5	5	0	0%	Ŷ	0.00	•	•			
M69 Junction 1		M69 Eastbound	1	2	1	100%	Y	0.82	•	•			
WPB Inuction 1		M59 Westbound	0	0	0		Y	0.00	•	•			
		A5 Northbound	6	6	0	0%	Y	0.00	•	•			
	84109 Hinckley Road	84109 Rugby Road	2	2	0	0%	Y	0.00	•	•			
		M69 Eastbound	2		1	50%	Y	0.63	•	•			-
		A5 Southbound	1		0	0%	Y	0.00		•			
		A5 Northbound	66	65	-1	-2%	Y	0.12	•	•			
		84109 Rugby Road	5	3	-2	-40%	Y	1.00	•	•			
	M69 Eastbound	M69 Eastbound	298	299	1	0%	Y	0.06	•	•			-
		A5 Southbound	34	34	0	0%	Y	0.00		•			
		84109 Hinckley Road	1	1	0	0%	Ŷ	0.00	•	•			
		84109 Rugby Road	0		0		Y	0.00		•			
		M69 Eastbound	32	31	-1	-3%	Y	0.18	•	•			-
	AS Southbound	A5 Southbound	91	90	-1	-1%	Y	0.11	•	•			-
		84109 Hinckley Road	2		0		Ŷ	0.00	•	•			-
		M69 Westbound	30		ő	0%	Y	0.00		•			-
		A5 Watling Street Eastbound	2		0	0%	Y	0.00	•	•			-
	Wolvey Road Southbound	Wolvey Road Southbound	0		0		N	0.00		•			-
		A5 Watling Street Westbound	1	0	-1	-100%	Y	1.41	•	•			-
		Wolvey Road Southbound	0		0		Y	0.00					-
	A5 Watling Street Westbound		214		-6	-3%	Y	0.41		•		_	-
	no musing ou cee mes country	Wolvey Road Northbound	214		-2	-100%	Y	2.00					-
A5/Wolvey Road		A5 Watling Street Westbound	0		-2		N	0.00					-
	Wolvey Road Northbound	Wolvey Road Northbound	0		0		N	0.00					-
		A5 Watling Street Eastbound	0		1 õ		N	0.00					-
		Wolvey Road Northbound	3	3	0	- 0%	Y	0.00					-
	A5 Watling Street Eastbound	A5 Watling Street Eastbound	150	151	1	1%	Y	0.00					-
	sto maching oneer castoound	A5 Watling Street Westbound	150		0		Y	0.00					-

AM Peak (07:30-08:30) Summary - ALL	
Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	47
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

TIMEINT
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400
1800-5400

	Junction/	Movement	venix	TE FIOW	Unre	rence	GEHICH	ena M	55		simen	tenally	Net.
					Actual							700 -	
		M69 Eastbound	134	135	1	1%	Y	0.09	•				
		A5 Southbound	202	207	5	2%	Y	0.35	•				
	B4109 Rugby Road	84109 Hinckley Road	325	326	1	0%	Y	0.06		•			
		M69 Westbound	681	698	17	2%	Y	0.65	•	•			
		A5 Northbound	37	36	-1	-3%	Y	0.17	•	•			
		A5 Southbound	49	49	0	0%	Y	0.00					
		84109 Hinckley Road	241	240	-1	0%	Y	0.06	•	•			
	M69 Westbound	M69 Westbound	2261	2280	19	1%	Y	0.40	•	•			
		A5 Northbound	300	304	4	1%	Y	0.23	•	•			
		84109 Rugby Road	37	36	-1	-3%	Y	0.17					
		84109 Hinckley Road	15	15	0	0%	Y	0.00	•	•			
		M69 Westbound	248	249	1	0%	Ý	0.06		•		-	-
	AS Northbound	A5 Northbound	449	436	-13	-3%	Y	0.62		•		-	_
		B4109 Rugby Road	89	89	0	0%	Y	0.00				-	-
		M69 Eastbound	41	41	0	0%	Ŷ	0.00	•	•			
unction 1		M69 Westbound	7	7	0	0%	Y	0.00				-	
		A5 Northbound	100	100	0	0%	Ŷ	0.00			_	-	-
M69 Westbound AS Northbound AS Northbound AS Northbound AS Southbound AS Southbound AS Southbound AS Southbound AS Southbound AS Wolvey Road Southbound AS Wolvey Road Northbound AS Wolvey Road Northbound	B4109 Hinckley Boad	B4109 Rugby Road	103	100	-1	-1%	Y	0.10				-	
	M69 Eastbound	103	102	7	4%	Y	0.50				-	-	
	A5 Southbound	150	6	1	20%	Y	0.43				-	-	
	A5 Northbound	298	295	-3	-1%	Y	0.45				-	-	
	B4109 Rugby Road	190	189	-1	-1%	Y	0.07				-	-	
	M69 Eastbound	1649	1653	4	0%	Y	0.10					_	
	A5 Southbound	135	1833	-1	-1%	Ý	0.09				-	-	
	B4109 Hinckley Road	155	134	0	-179	Y	0.00					-	
		B4109 Rugby Road	14	14 6	1	20%	Y	0.43			-	-	-
	M69 Eastbound	253	261	8	20%	Y	0.50				-	-	
				13		Y	0.66			-	-	-	
	A5 Southbound	386	399		3%	Y	0.66				-	-	
	84109 Hinckley Road	116	118	2 14	2%	Y	0.18			-	-	-	
		M69 Westbound	355	369	-14	4%	Y	0.09	•			-	
	Mahan David Camble and	A5 Watling Street Eastbound	114	113				0.09			-	-	-
	wolvey koad southbound	Wolvey Road Southbound	1	1	0	0%	Y					-	-
		A5 Watling Street Westbound	45	45	0	0%		0.00	•			-	-
		Wolvey Road Southbound		1	-1	-50%	Y	0.82					-
	AS Watting Street Westbound	A5 Watling Street Westbound	1146	1158	12	1%	Y	0.35	•			_	-
ivey Road		Wolvey Road Northbound	17	15	-2	-12%			•			-	-
		A5 Watling Street Westbound	1	1	0	0%	N	0.00	•			-	-
	workey koad Northbound	Wolvey Road Northbound	1	0	-1	-100%	N	1.41	•				-
		A5 Watling Street Eastbound	2	1	-1	-50%	N		_	· ·		-	-
		Wolvey Road Northbound	32	31	-1	-3%	Y	0.18	•			-	
A5 Watling Street Eastbound		A5 Watling Street Eastbound	989	1017	28	3%	Y	0.88	•	-		-	-
		A5 Watling Street Westbound	0	0	0		Y	0.00	•				
		1 Peak (07:30-08:30) S		LICHT									
		· · ·	ummary	Gonn	3								
							42						
	VISSIM model counts with GEH						42						
	% of VISSIM counts with GEH <	3					100.00%						
	VISSIM model counts with GEH						42						
% of VISSIM counts with GE						_	100.00%						
			_		_	_	42						
	VISSIM model counts with GEH <10 % of VISSIM counts with GEH <10												
	6 of VISSIM counts with GEH <10												
	-	NebTAG Unit 3.1 criteria											
	VISSIM model counts meeting W % of VISSIM counts meeting We						42						

AM Peak (08:30-09:30) Summary - Al	LL
Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.005
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	47
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	47
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Junction	Junction/	Vehicle Flow		Difference		GEH Crit	iteria Met		E	ow Criteria N		et		
	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 - 2700	>2700	
		Zone B - M69 Eastbound	118	118	0	0%	N	0.00						
		Zone C - A5 Southbound	185	185	0	0%	N	0.00						
	Zone A - B4109 Rugby Road	Zone D - 84109 Hinckley Road	168	172	- 4	2%	N	0.31						
		Zone E - M69 Westbound	403	413	10	2%	N	0.50		•				
		Zone F - AS Northbound	47	49	2	4%	N	0.29		•				
		Zone C - A5 Southbound	64	64	0	0%	N	0.00						
		Zone D - B4109 Hinckley Road	149	155	6	4%	N	0.49						
	Zone B - M69 Westbound	Zone E - M69 Westbound	1744	1764	20	1%	N	0.48		•	1.1			
		Zone F - AS Northbound	199	211	12	6%	N	0.84		•				
		Zone A - B4109 Rugby Road	38	37	-1	-3%	N	0.16						
		Zone D - 84109 Hinckley Road	8	8	0	0%	N	0.00		•				
		Zone E - M69 Westbound	200	202	2	1%	N	0.14						
	Zone C - AS Northbound	Zone F - AS Northbound	399	437	38	10%	N	1.85		. •				
		Zone A - B4109 Rugby Road	95	96	1	1%	N	0.10	•	•		700 - >2700		
/69 Junction 1		Zone B - M69 Eastbound	32	32	0	0%	N	0.00	•	•		700-22700		
We Junction 1		Zone E - M69 Westbound	17	17	0	0%	N	0.00						
		Zone F - AS Northbound	79	82	3	4%	N	0.33		•				
	Zone D - B4109 Hinckley Road	Zone A - B4109 Rusby Road	112	112	0	0%	N	0.00						
		Zone B - M69 Eastbound	93	98	5	5%	N	0.51	•	•				
		Zone C - A5 Southbound	6	6	0	0%	N	0.00		•				
		Zone F - AS Northbound	251	267	16	6%	N	0.99		•				
		Zone A - B4109 Rugby Road	141	142	1	1%	N	0.08		•				
	Zone E - M69 Eastbound	Zone B - M69 Eastbound	1278	1281	3	0%	N	0.08			1.1			
		Zone C - A5 Southbound	109	112	3	3%	N	0.29		•				
		Zone D - 84109 Hinckley Road	11	11	0	0%	N	0.00		•				
		Zone A - B4109 Rugby Road	11	11	0	0%	N	0.00						
		Zone B - M69 Eastbound	228	226	-2	-1%	N	0.13		•				
	Zone F - A5 Southbound	Zone C - A5 Southbound	444	445	1	0%	N	0.05		•			_	
		Zone D - 84109 Hinckley Road	54	56	2	4%	N	0.27	•	•				
		Zone E - M69 Westbound	291	289	-2	-1%	N	0.12		•				
		AS Watling Street Eastbound	42	39	-3	-7%	Y	0.47	•	•				
	Wolvey Road Southbound	Wolvey Road Southbound	0	0	0		N	0.00		•				
		A5 Watling Street Westbound	40	40	0	0%	Y	0.00		•		700-2700		
		Wolvey Road Southbound	1	3	2	200%	Y	1.41		•				
	A5 Watling Street Westbound	A5 Watling Street Westbound	988	1035	47	5%	Y	1.48		•	1.1			
Children David		Wolvey Road Northbound	17	12	-5	-29%	Y	1.31						
5/Wolvey Road		AS Watling Street Westbound	0	0	0		N	0.00	•	•				
	Wolvey Road Northbound	Wolvey Road Northbound	3	0	-3	-100%	N	2.45						
		A5 Watling Street Eastbound	0	3	3		N	2.45	•					
		Wolvey Road Northbound	46	46	0	0%	Ŷ	0.00	•					
	A5 Watling Street Eastbound	AS Watling Street Eastbound	984	985	1	0%	Y	0.03	•	•				
		A5 Watling Street Westbound	1	1	0	0%	Y	0.00						
	AN	Peak (08-30-09-30) S	umman					1						

AM Peak (08:30-09:30) Summary - LIGHT	s
Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

THANK THE SECTION OF THE SECTION OF

	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 - 2700	>2700
		M69 Eastbound	134	135	1	1%	Y	0.09	•				
		A5 Southbound	191	196	5	3%	Y	0.36	•	•			
	B4109 Rugby Road	B4109 Hinckley Road	319	320	1	0%	Y	0.06	•				
		M69 Westbound	673	690	17	3%	Y	0.65					
		A5 Northbound	37	36	-1	-3%	Y	0.17	•	•			
		A5 Southbound	36	36	0	0%	Y	0.00	•	•			
		84109 Hinckley Road	237	235	-2	-1%	Y	0.13	•				
	M69 Westbound	M69 Westbound	2026	2045	19	1%	Y	0.42					
		A5 Northbound	274	283	9	3%	Y	0.54	•				
		B4109 Rugby Road	31	30	-1	-3%	Y	0.18					
		84109 Hinckley Road	14	14	0	0%	Y	0.00	•				
		M69 Westbound	217	218	1	0%	Y	0.07	•	•			
	AS Northbound	A5 Northbound	390	388	-2	-1%	Y	0.10					
		B4109 Rugby Road	87	87	0	0%	Y	0.00					
9 Junction 1		M69 Eastbound	35	35	0	0%	Y	0.00	•				
5 Janeadon 1		M69 Westbound	7	7	0	0%	Y	0.00	•				
		A5 Northbound	96	96	0	0%	Y	0.00	•	•			
	B4109 Hinckley Road	B4109 Rugby Road	100	99	-1	-1%	Y	0.10	•	•			
		M69 Eastbound	187	194	7	4%	Y	0.51	•				
		A5 Southbound	4	4	0	0%	Y	0.00	•				
		A5 Northbound	276	277	1	0%	Y	0.06	•	•			
		84109 Rugby Road	182	181	-1	-1%	Y	0.07	•	•			
	M69 Eastbound	M69 Eastbound	1473	1477	4	0%	Y	0.10	•	•			
		A5 Southbound	120	118	-2	-2%	Y	0.18	•	•			
		84109 Hinckley Road	13	13	0	0%	Y	0.00	•	•			
		84109 Rugby Road	4	4	0	0%	Y	0.00	•	•			
		M69 Eastbound	228	236	8	4%	Y	0.53	•	•			
	A5 Southbound	A5 Southbound	314	324	10	3%	Y	0.56	•	•			
		84109 Hinckley Road	113	115	2	2%	Y	0.19	•	•			
		M69 Westbound	334	349	15	4%	Y	0.81	•	•			
		A5 Watling Street Eastbound	110	112	2	2%	Y	0.19	•	•			
	Wolvey Road Southbound	Wolvey Road Southbound	1	1	0	0%	N	0.00	•	•			
		A5 Watling Street Westbound	44	44	0	0%	Y	0.00	•	•			
		Wolvey Road Southbound	2	1	-1	-50%	Y	0.82	•	•			
	AS Watling Street Westbound	A5 Watling Street Westbound	1015	1066	51	5%	Y	1.58	•	•			
		Wolvey Road Northbound	17	15	-2	-12%	Y	0.50					
Wolvey Road		A5 Watling Street Westbound	1	1	0	0%	N	0.00	•	•			
	Wolvey Road Northbound	Wolvey Road Northbound	1	0	-1	-100%	N	1.41	•	•			
		A5 Watling Street Eastbound	2	1	-1	-50%	N	0.82	•	•			
		Wolvey Road Northbound	30	29	-1	-3%	Y	0.18					
	A5 Watling Street Eastbound	A5 Watling Street Eastbound	871	895	24	3%	Y	0.81	•	•			
		A5 Watling Street Westbound	0	0	0		Ý	0.00			_	-	

	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 - 2700	>270
		Zone B - M69 Eastbound	114	114	0	0%	N	0.00	•	•			
		Zone C - A5 Southbound	178	178	0	0%	N	0.00	•	•			
	Zone A - B4109 Rugby Road	Zone D - B4109 Hinckley Road	164	168	4	2%	N	0.31	•	•			
		Zone E - M69 Westbound	395	405	10	3%	N	0.50	•	•			
		Zone F - AS Northbound	46	47	1	2%	N	0.15	٠	•			
		Zone C - A5 Southbound	44	44	0	0%	N	0.00	•	•			
		Zone D - B4109 Hinckley Road	143	150	7	5%	N	0.58	•	•			
	Zone B - M69 Westbound	Zone E - M69 Westbound	1502	1521	19	1%	N	0.49	•				
		Zone F - AS Northbound	163	164	1	1%	N	0.08	•	•			
		Zone A - B4109 Rugby Road	36	36	0	0%	N	0.00	•	•			
		Zone D - B4109 Hinckley Road	6	6	0	0%	N	0.00	•	•			
		Zone E - M69 Westbound	175	176	1	1%	N	0.08	•	•			
		Zone F - A5 Northbound	293	298	5	2%	N	0.29	•	•			
		Zone A - B4109 Rugby Road	93	94	1	1%	N	0.10	•	•			
M69 Junction 1		Zone B - M69 Eastbound	27	27	0	0%	N	0.00	•	•			
MPA JUNCTION 1		Zone E - M69 Westbound	17	17	0	0%	N	0.00	•	•			
	Zone D - B4109 Hinckley Road	Zone F - AS Northbound	72	73	1	1%	N	0.12	٠	•			
		Zone A - B4109 Rugby Road	110	110	0	0%	N	0.00	•	•			
		Zone B - M69 Eastbound	87	91	4	5%	N	0.42	•	•			
		Zone C - AS Southbound	5	5	0	0%	N	0.00	•	•			
	Zone E - M69 Eastbound	Zone F - AS Northbound	206	208	2	1%	N	0.14	•	•			
		Zone A - B4109 Rugby Road	137	137	0	0%	N	0.00	•	•			
		Zone B - M69 Eastbound	1127	1129	2	0%	N	0.05	•	•			
		Zone C - A5 Southbound	90	93	3	3%	N	0.31	٠	•			
		Zone D - 84109 Hinckley Road	11	11	0	0%	N	0.00	•	•			
		Zone A - B4109 Rugby Road	11	11	D	0%	N	0.00	•	•			
		Zone B - M69 Eastbound	187	185	-1	-1%	N	0.07	•	•			
	Zone F - A5 Southbound	Zone C - A5 Southbound	339	338	-1	0%	N	0.05	•	•			
		Zone D - 84109 Hinckley Road	51	53	2	4%	N	0.28	•	•			
		Zone E - M69 Westbound	245	244	-1	0%	N	0.06	•	•			
		A5 Watling Street Eastbound	41	38	-3	-7%	Y	0.48	•	•			
	Wolvey Road Southbound	Wolvey Road Southbound	0	0	0		N	0.00	•	•			
	-	A5 Watling Street Westbound	38	38	0	0%	Y	0.00	•	•			
		Wolvey Road Southbound	1	3	2	200%	Y	1.41	•	•			
	A5 Watling Street Westbound		799	782	-17	-2%	Y	0.60	•	•			_
	-	Wolvey Road Northbound	16	11	-5	-31%	Y	1.36	•				
A5/Wolvey Road		A5 Watling Street Westbound	0	0	0		N	0.00	•	•			
	Wolvey Road Northbound	Wolvey Road Northbound	3	0		-100%	N	2.45	•	•			
	,	A5 Watling Street Eastbound	0	3	3		N	2.45	•	•			-
		Wolvey Road Northbound	45	45	0	0%	Y	0.00					
	A5 Watling Street Eastbound	A5 Watling Street Eastbound	790	791	1	0%	Y	0.04	•				-
		A5 Watting Street Westbound	/30	1	0	0%	Y	0.00			-		

AM Peak (07:30-08:30) Summary - HEAVIES						
umber of counts considered	42					
If model counts with GEH <3	41					
ISSIM counts with GEH <3	97.625					
M model counts with GEH <5	42					
ISSIM counts with GEH <5	100.00%					
M model counts with GEH <10	42					
ISSIM counts with GEH <10	100.00%					
If model counts meeting WebTAG Unit 3.1 criteria	42					
ISSIM counts meeting WebTAG Unit 3 1 flow criteria	100.00%					

Total n VISSIN % of V VISSIN % of V VISSIN % of V Junction/ Movement

TIMEINT	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	
1800-5400	

					Actual			GEH	Pass		2700	>2700
		M69 Eastbound	0	0	0		Y	0.00	•	•		_
		A5 Southbound	11	11	0	0%	Y	0.00		•		
	B4109 Rugby Road	84109 Hinckley Road	6	6	0	0%	Y	0.00	•	•		
		M69 Westbound	8	8	0	0%	Y	0.00	•	•		
		A5 Northbound	0	0	0		Y	0.00	•	•		
		A5 Southbound	13	13	0	0%	Y	0.00		•		
		84109 Hinckley Road	4	5	1	25%	Y	0.47	•	•		
	M69 Westbound	M69 Westbound	235	235	0	0%	Y	0.00	•	•		
		A5 Northbound	26	21	-5	-19%	Y	1.03	•	•		
		84109 Rugby Road	6	6	0	0%	Y	0.00		•		
		84109 Hinckley Road	1	1	0	0%	Y	0.00	•	•		
		M69 Westbound	31	31	0	0%	Y	0.00		•		
	A5 Northbound	A5 Northbound	59	48	-11	-19%	Y	1.50	•	•		
		84109 Rugby Road	2	2	0	0%	Y	0.00	•	•		
		M69 Eastbound	6	6	0	0%	Y	0.00	•	•		
59 Junction 1		M69 Westbound	0	0	0		Y	0.00	•	•		
		A5 Northbound	4	4	0	0%	Y	0.00	•	•		
	B4109 Hinckley Road	84109 Rugby Road	3	3	0	0%	Y	0.00	•	•		
		M69 Eastbound	3	3	0	0%	Y	0.00	•	•		
		A5 Southbound	1	2	1	100%	Y	0.82		•		
		A5 Northbound	22	18	-4	-18%	Y	0.89	•	•		
		84109 Rugby Road	8	8	0	0%	Y	0.00	•	•		
	M69 Eastbound	M69 Eastbound	176	176	0	0%	Y	0.00	•	•		
		A5 Southbound	15	16	1	7%	Y	0.25	•	•		
		84109 Hinckley Road	1	1	0	0%	Y	0.00				
		84109 Rugby Road	1	2	1	100%	Y	0.82	•	•		
		M69 Eastbound	25	25	0	0%	Y	0.00	•	•		
	A5 Southbound	A5 Southbound	72	75	3	4%	Y	0.35	•	•		
		84109 Hinckley Road	3	3	0	0%	Y	0.00	•	•		
		M69 Westbound	21	20	-1	-5%	Y	0.22	•	•		
		A5 Watling Street Eastbound	4	1	-3	-75%	Y	1.90	•	•		
1	Wolvey Road Southbound	Wolvey Road Southbound	0	0	0		N	0.00		•		
		A5 Watling Street Westbound	1	1	0	0%	Y	0.00				
		Wolvey Road Southbound	0	0	0		Y	0.00	•			
AS	Watling Street Westbound	A5 Watling Street Westbound	131	92	-39	-30%	Y	3.69	•	•		
Wolvey Road		Wolvey Road Northbound	0	0	0		Y	0.00	•	•		
Noney Adad		A5 Watling Street Westbound	0	0	0		N	0.00	•			
- I V	Nolvey Road Northbound	Wolvey Road Northbound	0	0	0		N	0.00				
		A5 Watling Street Eastbound	0	0	0		N	0.00				
		Wolvey Road Northbound	2	2	0	0%	Y	0.00	•	•		
AS	5 Watling Street Eastbound	A5 Watling Street Eastbound	118	122	4	3%	Y	0.37	•	•		
		A5 Watling Street Westbound	0	0	0		Y	0.00		•		

Vehicle Flow Difference GEH Criteria Met Flow Criteria Met

AM Peak (08:30-09:30) Summary - HEAVIES

Total number of counts considered	42
VISSIM model counts with GEH <3	41
% of VISSIM counts with GEH <3	97.625
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	47
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Junction (Wowelline Inc		VEHICIETION		Uniterence		Gentente				Carrier III	
			Observed		Actual						700 - 2700	>2700
		Zone B - M69 Eastbound	4	4	0	0%	N	0.00	•	•		
		Zone C - A5 Southbound	7	7	0	0%	N	0.00	•	•		
	Zone A - B4109 Rugby Road	Zone D - B4109 Hinckley Road	4	4	0	0%	N	0.00				
		Zone E - M69 Westbound	8	8	0	0%	N	0.00		•		
		Zone F - AS Northbound	1	2	1	100%	N	0.82		•		
		Zone C - A5 Southbound	20	20	0	0%	N	0.00				
		Zone D - B4109 Hinckley Road	6	5	-1	-17%	N	0.43				
	Zone B - M69 Westbound	Zone E - M69 Westbound	242	243	1	0%	N	0.05				
		Zone F - A5 Northbound	36	47	11	31%	N	1.71		•		
		Zone A - B4109 Rugby Road	2	1	-1	-50%	N	0.82				
		Zone D - 84109 Hinckley Road	2	2	0	0%	N	0.00		•		
		Zone E - M69 Westbound	25	26	1	4%	N	0.20				
	Zone C - AS Northbound	Zone F - AS Northbound	106	139	33	31%	N	2.98		•		
		Zone A - B4109 Rugby Road	2	2	0	0%	N	0.00		•		
M69 Junction 1		Zone B - M69 Eastbound	5	5	0	0%	N	0.00		•		
1009 Julicuon I		Zone E - M69 Westbound	0	0	0		N	0.00	•			
		Zone F - AS Northbound	7	9	2	29%	N	0.71		•		
	Zone D - B4109 Hinckley Road	Zone A - B4109 Rugby Road	2	2	0	0%	N	0.00	•	•		
		Zone B - M69 Eastbound	6	7	1	17%	N	0.39	•	•		
		Zone C - A5 Southbound	1	1	0	0%	N	0.00		•		
		Zone F - AS Northbound	45	59	14	31%	N	1.94	•	•		
		Zone A - B4109 Rugby Road	4	5	1	25%	N	0.47				
	Zone E - M69 Eastbound	Zone B - M69 Eastbound	151	152	1	1%	N	0.08		•		
		Zone C - A5 Southbound	19	19	0	0%	N	0.00		•		
		Zone D - B4109 Hinckley Road	0	0	0		N	0.00				
		Zone A - B4109 Rugby Road	0	0	0		N	0.00		•		
		Zone B - M69 Eastbound	41	40	-1	-2%	N	0.16				
	Zone F - A5 Southbound	Zone C - A5 Southbound	105	107	2	2%	N	0.19	•	•		
		Zone D - 84109 Hinckley Road	3	3	0	0%	N	0.00		•		
		Zone E - M69 Westbound	46	45	-1	-2%	N	0.15				
		AS Watling Street Eastbound	1	1	0	0%	Y	0.00	•	•		
	Wolvey Road Southbound	Wolvey Road Southbound	0	0	0		N	0.00	•	•		
		A5 Watling Street Westbound	2	2	0	0%	Y	0.00				
		Wolvey Road Southbound	0	0	0		Y	0.00	•			
	A5 Watling Street Westbound	A5 Watling Street Westbound	189	253	64	34%	Y	4.31		•		
A5/Wolvey Road		Wolvey Road Northbound	1	1	0	0%	Y	0.00				
мэү могуеу коаd		AS Watling Street Westbound	0	0	0	-	N	0.00	•	•		
	Wolvey Road Northbound	Wolvey Road Northbound	0	0	0	-	N	0.00	•	•		
		A5 Watling Street Eastbound	0	0	0		N	0.00	•	•		
		Wolvey Road Northbound	1	1	0	0%	Y	0.00				
	A5 Watling Street Eastbound	A5 Watling Street Eastbound	194	194	0	0%	Y	0.00	•	•		
		A5 Watling Street Westbound	0	0	0	-	Y	0.00				

AM Peak (07:30-09:30) Summary - ALL						
Fotal number of counts considered						
VISSIM model counts with GEH <3	4)					
% of VISSIM counts with GEH <3	100.005					
VISSIM model counts with GEH <5	4					
% of VISSIM counts with GEH <5	100.009					
VISSIM model counts with GEH <10	43					
% of VISSIM counts with GEH <10	100.009					
VISSIM model counts meeting WebTAG Unit 3,1 criteria	4					
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.005					

					Actual						<700	700 - 2700	
		Zone B - M69 Eastbound	252	253	1	0%	N	0.06	•	•			
		Zone C - A5 Southbound	387	392	5	1%	N	0.25		•			
	Zone A - B4109 Rugby Road	Zone D - 84109 Hinckley Road	493	498	5	1%	N	D.22	•	•			
		Zone E - M69 Westbound	1084	1111	27	2%	N	0.82		•	1.1		
		Zone F - A5 Northbound	84	85	1	1%	N	0.11		•			
		Zone C - A5 Southbound	113	113	0	0%	N	0.00		•			
		Zone D - B4109 Hinckley Road	390	395	5	1%	N	0.25	•	•			
	Zone B - M69 Westbound	Zone E - M69 Westbound	4005	4044	39	1%	N	0.61		•			
		Zone F - AS Northbound	499	515	16	3%	N	0.71		•			
		Zone A - B4109 Rugby Road	75	73	-2	-3%	N	0.23		•			
		Zone D - B4109 Hinckley Road	23	23	0	0%	N	0.00	•	•			
		Zone E - M69 Westbound	448	451	3	1%	N	0.14	•	•			
	Zone C - AS Northbound	Zone F - AS Northbound	848	873	25	3%	N	0.85	•	•			
		Zone A - 84109 Rugby Road	184	185	1	1%	N	0.07	•	•			
M69 Junction 1		Zone B - M69 Eastbound	73	73	0	0%	N	0.00	•	•			
MIDD JUNCTION 1		Zone E - M69 Westbound	24	24	0	0%	N	0.00	•	•			
		Zone F - A5 Northbound	179	182	3	2%	N	0.22	•	•			
	Zone D - B4109 Hinckley Road	Zone A - B4109 Rugby Road	215	214	-1	0%	N	0.07	•	•			
		Zone B - M69 Eastbound	283	295	12	4%	N	0.71	٠	•			
		Zone C - A5 Southbound	11	12	1	9%	N	0.29		•			
	Zone E - M69 Eastbound	Zone F - AS Northbound	549	562	13	2%	N	0.55	•	•			
		Zone A - B4109 Rugby Road	331	331	0	0%	N	0.00	•	•			
		Zone B - M69 Eastbound	2927	2934	7	0%	N	0.13	•	•			
		Zone C - A5 Southbound	244	246	2	1%	N	0.13		•			
		Zone D - B4109 Hinckley Road	25	25	0	0%	N	0.00	•	•			
		Zone A - 84109 Rugby Road	16	17	1	6%	N	0.25	•	•			
		Zone B - M69 Eastbound	481	487	6	1%	N	D.27	•	•			
	Zone F - AS Southbound	Zone C - A5 Southbound	830	844	14	2%	N	0.48		•			
		Zone D - B4109 Hinckley Road	170	174	4	2%	N	0.30	٠	•			-
		Zone E - M69 Westbound	646	658	12	2%	N	D.47	•	•			
		AS Watling Street Eastbound	156	152	-4	-3%	Y	0.32	•	•			<u> </u>
	Wolvey Road Southbound	Wolvey Road Southbound	1	1	0	0%	N	0.00		•			
		AS Watling Street Westbound	85	85	0	0%	Y	0.00	•	•			
		Wolvey Road Southbound	3	4	1	33%	Y	0.53		•			-
	A5 Watling Street Westbound	AS Watling Street Westbound	2134	2193	59	3%	Y	1.27	•	•			-
	-	Wolvey Road Northbound	34	27	-7	-21%	Y	1.27	•	•			
A5/Wolvey Road		AS Watling Street Westbound	1	1	0	0%	N	0.00	•	•			-
	Wolvey Road Northbound	Wolvey Road Northbound	4	0	-4	-100%	N	2.83	•	•			-
		AS Watling Street Eastbound	2	4	2	100%	N	1.15	•	•			-
		Wolvey Road Northbound	78	77	-1	-1%	Y	0.11	•	•			-
	A5 Watling Street Eastbound	AS Watling Street Eastbound	1973	2002	29	1%	Y	0.65	•	•			-
	To making pareet Lastround	A5 Watling Street Westbound	15/15	1	0	0%	Y	D.00	•	•			<u> </u>

Vehicle Flow Difference GEH Criteria Met Flow Crit

Fatal number of counts considered	42
/ISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.00%
/ISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100.00%
/ISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100.00%
/ISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Junction/	Movement	Vehi	le Flow	Difference		GEH Cri	teria Mi	et	FI	ow Cri	iteria lv	viet	
	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>270	
		Zone B - M69 Eastbound	248	249	1	0%	N	0.06	•	•				
	Zone A - B4109 Rugby Road	Zone C - AS Southbound	369	374	5	1%	N	0.26		•				
		Zone D - B4109 Hinckley Road	483	488	5	1%	N	0.23		•				
		Zone E - M69 Westbound	1068	1095	27	3%	N	0.82						
		Zone F - AS Northbound	83	83	0	0%	N	0.00		•				
		Zone C - A5 Southbound	80	80	0	0%	N	0.00		•				
		Zone D - B4109 Hinckley Road	380	385	5	1%	N	0.26		•				
	Zone B - M69 Westbound	Zone E - M69 Westbound	3528	3566	38	1%	N	0.64	•	•				
		Zone F - AS Northbound	437	447	10	2%	N	0.48	•	•				
		Zone A - 84109 Rugby Road	67	66	-1	-1%	N	0.12		•				
		Zone D - B4109 Hinckley Road	20	20	0	0%	N	0.00		•				
		Zone E - M69 Westbound	392	394	2	1%	N	0.10		•				
	Zone C - A5 Northbound	Zone F - AS Northbound	683	686	3	0%	N	0.11		•				
		Zone A - B4109 Rugby Road	180	181	1	1%	N	0.07						
469 Junction 1		Zone B - M69 Eastbound	62	62	0	0%	N	0.00		•				
100 1011000111		Zone E - M69 Westbound	24	24	0	0%	N	0.00		•				
		Zone F - AS Northbound	168	169	1	1%	N	0.08		•				
	Zone D - B4109 Hinckley Road	Zone A - B4109 Rugby Road	210	209	-1	0%	N	0.07		•				
		Zone B - M69 Eastbound	274	285	11	4%	N	0.66		•				
		Zone C - A5 Southbound	9	9	0	0%	N	0.00		•				
		Zone F - AS Northbound	482	485	3	1%	N	0.14		•				
		Zone A - B4109 Rugby Road	319	318	-1	0%	N	0.06		•				
	Zone E - M69 Eastbound	Zone B - M69 Eastbound	2600	2606	6	0%	N	0.12		•	1.1			
		Zone C - A5 Southbound	210	211	1	0%	N	0.07		•				
		Zone D - B4109 Hinckley Road	24	24	0	0%	N	0.00		•				
		Zone A - B4109 Rugby Road	15	15	0	0%	N	0.00		•				
		Zone B - M69 Eastbound	415	422	7	2%	N	0.34		•				
	Zone F - A5 Southbound	Zone C - A5 Southbound	653	662	9	1%	N	0.35		•				
		Zone D - B4109 Hinckley Road	164	168	4	2%	N	0.31		•				
		Zone E - M69 Westbound	579	593	14	2%	N	0.58		•				
		AS Watling Street Eastbound	151	150	-1	-1%	Y	0.08		•				
	Wolvey Road Southbound	Wolvey Road Southbound	1	1	0	0%	N	0.00		•				
		A5 Watling Street Westbound	82	82	0	0%	Y	0.00		•				
		Wolvey Road Southbound	3	4	1	33%	Y	0.53						
	A5 Watling Street Westbound	AS Watling Street Westbound	1814	1848	34	2%	Y	0.79		•				
5/Wolvey Road		Wolvey Road Northbound	33	26	-7	-21%	Y	1.29		•				
зучногиеў коао		AS Watling Street Westbound	1	1	0	0%	N	0.00		•				
	Wolvey Road Northbound	Wolvey Road Northbound	4	0	-4	-100%	N	2.83		•				
	1	AS Watling Street Eastbound	2	4	2	100%	N	1.15	•	•				
		Wolvey Road Northbound	75	74	-1	-1%	Y	0.12	•					
	A5 Watling Street Eastbound	AS Watling Street Eastbound	1661	1686	25	2%	Y	0.61		•				
		AS Watling Street Westbound	1	1	0	0%	Y	0.00		•				

AM Peak (07:30-09:30) Summary - HEAVIES

Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Junction/	Movement	Vehi	:le Flow	Diffe	rence	GEH Cri	teria M	et	FI	ow Cr	iteria Iv	net 🛛
	Approach	Exit/movement	Observed	Modelled	Actual	56	Critical	GEH	Pass	FLOW	<700	700 - 2700	>270
		Zone B - M69 Eastbound	4	4	0	0%	N	0.00	•	•			
		Zone C - A5 Southbound	18	18	0	0%	N	0.00	•	•			
	Zone A - B4109 Rugby Road	Zone D - B4109 Hinckley Road	10	10	0	0%	N	D.00	•	•			
		Zone E - M69 Westbound	16	16	0	0%	N	0.00	•	•			
		Zone F - AS Northbound	1	2	1	100%	N	0.82		•			
		Zone C - AS Southbound	33	33	0	0%	N	0.00	•	•			
		Zone D - B4109 Hinckley Road	10	10	0	0%	N	0.00	•	•			
	Zone B - M69 Westbound	Zone E - M69 Westbound	477	478	1	0%	N	0.05	•	•			
		Zone F - AS Northbound	62	68	6	10%	N	0.74	•	•			
		Zone A - B4109 Rugby Road	8	7	-1	-13%	N	0.37	•	•			
		Zone D - B4109 Hinckley Road	3	3	0	0%	N	0.00	•	•			
		Zone E - M69 Westbound	56	57	1	2%	N	0.13	•	•			
	Zone C - A5 Northbound	Zone F - AS Northbound	165	187	22	13%	N	1.66	•	•			
		Zone A - 84109 Rugby Road	4	4	0	0%	N	0.00	•	•			
M69 Junction 1		Zone B - M69 Eastbound	11	11	0	0%	N	0.00	•	•			
		Zone E - M69 Westbound	0	0	0		N	0.00	•	•			
		Zone F - AS Northbound	11	13	2	18%	N	0.58	•	•			
	Zone D - B4109 Hinckley Road	Zone A - 84109 Rugby Road	5	5	0	0%	N	0.00		•			
		Zone B - M69 Eastbound	9	10	1	11%	N	0.32	•	•			
		Zone C - A5 Southbound	2	3	1	50%	N	0.63	•	•			
		Zone F - AS Northbound	67	77	10	15%	N	1.18	•	•			
		Zone A - 84109 Rugby Road	12	13	1	8%	N	0.28	•	•			
	Zone E - M69 Eastbound	Zone B - M69 Eastbound	327	328	1	0%	N	0.06	•	•			
		Zone C - A5 Southbound	34	35	1	3%	N	0.17	•				
		Zone D - B4109 Hinckley Road	1	1	0	0%	N	0.00	•	•			
		Zone A - B4109 Rugby Road	1	2	1	100%	N	0.82	•	•			
		Zone B - M69 Eastbound	66	65	-1	-2%	N	0.12	•	•			
	Zone F - A5 Southbound	Zone C - A5 Southbound	177	182	5	3%	N	0.37	•	•			
		Zone D - B4109 Hinckley Road	6	6	0	0%	N	0.00	•	•	_	-	_
		Zone E - M69 Westbound	67	65	-2	-3%	N Y	0.25	•	•			
	Maker Band Cauthle and	AS Watling Street Eastbound	5	2	-3	-60%		1.60	<u> </u>		-		-
	Wolvey Road Southbound	Wolvey Road Southbound	0	0	0	-	N Y	0.00	•	•			-
		AS Watling Street Westbound	3	3	0	0%	Y Y	0.00	•	•	-		
		Wolvey Road Southbound	0		25	-	Y	1.37	•	•	-		-
	A5 Watling Street Westbound	AS Watling Street Westbound	320	345	25	8%	Y	1.37 D.00	•	•	-		
5/Wolvey Road		Wolvey Road Northbound	1	1	0	0%	N	0.00	•				
	Wolvey Road Northbound	AS Watling Street Westbound	0	0	0	-	N	0.00	•	•	-		
	wolvey Road Northbound	Wolvey Road Northbound	0	0	0	-	N	D.00	•	•			
		AS Watling Street Eastbound	3	3	0	- 0%	Y	0.00	•		-	-	-
	A5 Watling Street Eastbound	Wolvey Road Northbound		3	4	0%	Y	0.00	•	•			
	AS warning suber castbound	A5 Watling Street Eastbound	312	316	4		Y	0.23			-	-	-
	1	AS Watling Street Westbound	L 0	0	J 0		Ŷ	0.00	•	•			

APPENDIX 2: Journey Time Validation

From a To Dist, 1 Wating Sheet North 4 Watery Rog - Worey Road 68th	Avg, Min, Avg, Max, 61 54 60 6	Actual Diff, % Diff, Within 1: 36 •1	3% Within 1 min, Validates	Avg, Min, Avg, Max,	Actual C % Diff, With	n 1Within 1 min Validates Av	g, Min, Avg, Max,	Actual C % Diff, V	Vithin 1 Within 1 min Validates
		-	-			_			
-			_			_		_	_
					_			_	
		_	_	_		_			_
			_			_		1	
		_	_			_		_	
		-	_		1	_		-	_
						_			
									-
						-			

								07:30	0 -08:30									08:30 - 0	930								08:30 - 09	30		
	Descri	ption	Observ	/ed		Modelled	d			Validati	on				Modelle	d			Valida					Model	led			Validati	ion	
Section	From	- To	Dist,	Avg.	Min, /	Avg.	Max,	Actual Diff.	% Diff,	Within 15%	Within 1 min,	Validates	Avg.	Min.	Avg.	Max,	Actua	I S Dif	Within 15	% Within	1 Validates	Avg.	Min,	Avş	j. Max.	Actu	I (% Diff,	Within 15%	Within	Validates
1	Wating Street (North of Wolvey Rd)	- Wolvey Road	898m	87	69	87	104	1	1 %	× .	×	1	64		55	56 5	57 -	8 - 1	3 % 🖌	1	× 1	75		55	72 10	14	4 - 5	* *	1	×
5	A5 Watting Rd SB - Jct Wolvey	- A5 Watting Rd SB - Jct MW RAB	394m	92	59	93	115	5 2	2 %	×	1	1	73		45	47 5	i0 -2	5 -359	i ×	1	×	82		45	70 11	15 -	2 - 1	1 % 🖌	1	× .
15	RAB - Stopine A5 Wating (N) to Rugby Rd	-	43m	7	4	5	5	5 -3	-36%	×	1	1			4	4	4 -	1 -299	i x	1	1	6		4	4	5	2 -33%	×	1	1
16	RAB Circ RugbyRd	-	71m	13	14	21	24	1 8	60%	×	×	*	~		8	9 1	11	0 1 9	6 🖌	*	×	11		8	15 2	24	4 36%	×	*	*
17	RAB Rugby Road Jct to M69 NB Onslip	-	15m	2	5	6	6	3 4	169%	×	1	1	1		4	4	4	2 1149	6 ×	1	×	2		4	5	6	3 143%	×	1	×
18	RAB Circ M69 N On to M68 S Off	-	68m	10	14	15	16	5 5	45%	x	1	1	\$		12	12 1	13	3 36%	×	1	1	10		12	13 1	16	4 41%	×	1	1
19	RAB M69 SB Off to Watjing Rd SB	-	13m	2	2	2	2	2 0	- 6 3	4	×	1	2		2	2	2	0 - 5	8 1	1	×	2		2	2	2	0 - 6	× •	1	× .
9	A5 Watting Rd SB MW RAB (S)	 A5 Watting Rd SB (S) 	743m	46	44	44	45		- 3 3	• • •	1	1	47				15 -	2 - 4	8 1	1	1	46		44	45 4	15	2 - 4	× 1	1	1 A -
TOTAL	Watling Street (North of Wolvey Rd)	 A5 Watting Rd SB (S) 	2246m	259	200	273	316	3 14	6 %	× .	1	*	210	1	173 1	79 18	16 -3	4 + 1	5 % 🖌	1	× 1	234		172	226 31	7	8 - 4	* *	1	×
								07:30	0 -08:30									08:30 - 0								16:30	18:30			
	Descri	ption	Observ	/ed	h	Modelled	a			Validati	on				Modelle	d			Valida	ation				Model	led			Validati	ion	
Section	From			Avg.		Avg.	Max.	Actual Diff.	% Diff.		Within 1 min-	Validates	Avg.		Avg.		Actua	I (% Diff			1 Validates	Avg.	Min.	Avş			I (% Diff.			Validates
10	A5 Watting Rd NB (S)	A5 Watting Rd NB MW RAB (S)	748m		85	90	92	2 -12	+ 1 2	% 🖌	1	*	78		86	91 9	16 1	3 16%		1	×	90		85	90 9	6	0 0 %	1	1	× .
21	RAB Watting S to Hinkley Rd SB		27m		2	2	2	2 0	6 %	×	1	1			2	2	2	0 - 1	8 1	1	1	2		2	2	2	0 2 %	1	1	× .
22	RAB Circ Hinkley		82m		7	8	9	2	25%	×	1 1 C	1			6	7	7	0 7 9		1	1	6		6	7	9	1 16%	×	1	1 1 C
23	RAB Hinkley Rd to M68 SB		16m	2	1	1	1	1 0	- 7 3	1	1	1			1	1	1	0 13		1	1	1		1	1	1	0 2 %	1	1	1
24	RAB Circ M65 S		104m	17	12	13	14		-21%	×	×	1	13		12	12 1	12 -	4 - 7		1	× .	15		12	13 1	14		5 % 🖌	1	× .
25	M69 Jct Roundabout		34m		3	3	3		-36%	×	1	1		1	3	3	3 -	2 -409		1	1	5		3	3	3	-2 -38%	×	1	× .
6	Rugby Road NB - Jct MW RAB	Rugby Road NB - Jct Smil RAB	382m	39	38	39	39		0 %	1	· ·	1	31			39 4		1 - 1		1	1	39		37	39 4	н	0 - 1	× <	1	1
2	Rugby Road NB - Jct Smil RAB	A5 Wating St NB - Field 2	904m	56	60	60	60	· · ·	8 %			1	54				19	3 6 9				56		59	59 E		4 7 %	1	1	1
TOTAL	A5 Watling Rd NB (S)	A5 Watting St NB Field 2	2299m	227	209	216	221	1 -12	- 5 3	6 V -	1	1	200	2	206 2	13 22	1 1	3 7 9	6 🖌 🖌	1		214		205	215 23	6	1 0 %	1	1	 Image: A second s
				_			_		0 -08:30							_		08:30 - 0				_		_		16:30				
_								07:30	0 = 08:30									18:30 - 0								16:30	18:30			
	Descri	ption	Observ	red		Modelled	4	L		Validati					Modelle	d			Valida					Model	led			Validati		
Section			Dist.	Avg.	Min. /		Max.				Within 1 min.			Min.	Avg.						1 Validates	Avg.	Min.	Avs				Within 15%		
	M69 NB - Powerlines	M69 NB Offslip	867m			31	32		119	1 1 C	×	1	25			31 3		3 9 9		1	 	29		31		12	3 1 0	× *	1	
32	M69 NB Offslip	M69 NB Under	977m	31	34	34	34	1 3	10%	×	×	1	3		34	34 3		3 9 9		1	1	31		34	34 3	4	3 1 0	× *	1	1
33	M69 NB Onsip M69 NB - Powerlines	M69 NB XXX 0 M69 NB XXX	1724m 3568m	56 115	60	61	61	5	9 %	1	1	1	55		60	00 U	i0	5 9 9		1	1	55		60	60 6	51	5 9%	1	1	1
TOTAL					125	126	127		10%			· ·	11		125 1	25 12		1 9 9		1		115		125	126 12		1 9 %		1	· ·

									07:30	-08:30									08:3	0 - 0930	0							16:30 -	18:30			
			Description	Obse	rved		Modelle	d			Validat	ion				Mode	lled				Validation	n				Modelled	1			Validat	ion	
Sec	tion	From	- To	Dist.	Avg.	Min,	Avg.	Max,	Actual Diff.	% Diff.	Within 15%	Within 1 min.	Validates	Avg.	Min,	A	rg, 1/	Aax,	Actual (S	S Diff.	Within 15%	Within	Validates	Avg.	Min.	Avg.	Max,	Actua	t % Diff.	Within 155	Within	Validates
3	34	M69 SB XXX	M69 SB Offslip	1830m	58	67	67	67	7 9	15 %	1	*	1	6	2	66	66	67	6	11%	1	1	*	5	9 1	66 6	7 6	1	3 1 3 1	× *	1	1
3	35	M69 Under	M69 SB Onslip	871m	2	31	31	31	4	15 %	1 de 1	1	1	2	3	30	31	31	3	10%		1	× .	2	7	30 3	1 3	1 4	3 1 2 4	× *	× 1	×
3	36	M69 SB Onslip	M69 SB Powerlines	857m	2	31	31	32	2 3	12 %	4	×	1	2	3	31	31	31	3	9 %	×	1	×	2	8 :	31 3	1 33	2 1	1 1 1	× *	1	×
TOTA	AL.	M69 SB XXX	0 M69 SB Powerlines	3558m	113	125	129	130	16	14 %	1	1	1	11	3	127	128	129	12	10%	1	1	1	11	5 1:	12	9 13	14	1 1 2	1	1	1

							07:30	-08:30	1								08:	30 - 0930								1	8:30 - 18:30					
	Desi	ription	Obser	ved		Modelle	ed .			Validati	on				Mod	elled				Validati	on				Moc	elled				Validatio		
Section			Dist.	Avg.	Min.	Avg.		Actual Diff.		Within 15%	Within 1 min.	Validates			A	vg.		Actual (Within 15%		Validates	Avg.	Min.	1	vg. 1/	Aax. ,	Actual (% (Diff. W	ithin 15%	Within 1	Validates
28	M69 SB OffSlip	M69 SB OffSlip	333m	50	49	52	5	3 2	4 %	×	×	× .	4	2	41	44	46	1	3 %	× .	1	 	4	6	41	48	53	2 3	3 %	1	×	
	RAB M69 SB Off to Watling Rd SB		13m		2	2		2 0	- 6 3	1 de 1	×	1		2	2	2	2	0	- 5 %	1	1	 Image: A second s		2	2	2	2	0 -	6 %	1	1	 Image: A second s
20	RAB CIRC Wating Road		103m	16	14	14	1	4 -2	- 1 2	% 🖌	1	1	1:	5	13	13	14	-2	- 12	% ≁	1	1	1	5	13	14	14	-2 -	12%		1	1
21	RAB Walling S to Hinkley Rd SB		27m		2	2		2 0	6 %	1	1	1		2	2	2	2	0	- 1 %	1	1	1		2	2	2	2	0 2	2 %	1	1	1
22	RAB Circ Hinkley		82m	6	7	8		9 2	25%	×	1	1		6	6	7	7	0	7 %	1	1	×		6	6	7	9	1 1	6%	×	1	 Image: A second s
	RAB Hinkley Rd to M68 SB		16m		1	1		1 0	- 7 3	• •	×	1		1	1	1	1	0	13%	1	1	1 1 A		1	1	1	1	0 2	2 %	1	1	 Image: A second s
	RAB Circ M65 S		104m	17	12	13	1	4 -3	-21%	×	1	1	1	3	12	12	12	-1	- 7 %	1	1	× -	1	5	12	13	14	-2 -		1	1	
	RAB M69 NB Off to Walling N		34m		3	3		3 -2	-36%	x	1	1		5	3	3	3	-2	-40%	×	1	1		5	3	3	3	-2 -3	18%	x	1	1
6	A5 Watting Rd NB - Jct MW RAB	A5 Watting Rd NB - Jct Wolvey	382m	39	35	39	3	9 0	0 %	1	1	1	3	9	37	39	41	-1	- 1 %	1	1	 Image: A set of the set of the	3	19	37	39	41	0 -	1 %	1	1	 Image: A second s
TOTAL	M69 SB OffSlip	A5 Watting Rd NB Jct Wolvey	1095m	137	125	134	13	7 4	- 3 7	1	×	1	12	5	117	122	127	3	- 3 %	1	1	1	13	1	117	128	139	-3 -	3 %	1	1	
													-										-									
								07:30	-08:30	1								08:	30 - 0930							_	1	5:30 - 18:30)			
	Desi	ription	Obser	ved		Modelle	ed be			Validati	on				Mod	elled				Validati					Moc	lelled				Validatio		
Section	From	- To	Dist.	Avg.	Min,	Avg.	Max.	Actual Diff.	% Diff.	Within 15%	Within 1 min.	Validates	Avg.	Min,	A	vg.	Max.	Actual (% Diff.	Within 15%	Within 1	Validates	Avg.	Min.	A	vg. 1/	Aax.	Actual 0 % D	oiff, w	ithin 15%	Within 1	Validates
28	M69 SB OffSIp		333m	50	45	52	5	i3 2	4 %	1	1	1	4	2	41	44	46	1	3 %	1	1	1	4	6	41	48	53	2 3	3 %	1	1	
19	RAB M69 SB Off to Watling Rd SB		13m	2	:	2		2 0	- 6 3	1	1	1		2	2	2	2	0	- 5 %	1	1	1		2	2	2	2	0 -	6 %	1	×	×
9	A5 Watting Rd SB MW RAB (S)	A5 Watling Rd SB (S)	743m	46	44	44	4	5 -2	- 3 9	· · ·	×	× .	4	7	45	45	45	-2	- 4 %	× .	1	× .	4	6	44	45	45	-2 -	4 %	× .	×	
TOTAL	M69 SB OffSlip	 A5 Wating Rd SB (S) 	1089m	98	95	98	10	0 0	0 %	1	×	1	9	1	87	90	92	-1	- 1 %	1	1	× .	5	4	86	94	100	0 0	> %	1	1	- -

									07.30	-05.30									0.30 - 08	30							. 10.31	10.30				
	D	lescription	Obser	ved		Mode	lled				Validat	ion			h	fodelle	d			Validatio	on				Modelle	d				Validation		
Section	From		Dist,	Avg.		Avg.			Diff.	% Diff.	Within 15%	Within 1 min.	Validates	Avg.	Min.	Avg.		Actua				Validates	Avg.	Min.	Avg	Max	Actu	al (%D	Diff. With	thin 15% V	Within 11	/alidates
30	M69 NB Offslip		332m	4	8 4	5 !	56	63	8	17%	x	×	1	43	3	9	41 43	3	3 - 6	* *	*	× .	4	5	39	48	63	3 6	5 %	1	× 1	× 1
26	RAB Circ Watling N		56m		9	6	13	18	4	44%	×	1	1	10	1	5	5 6	5	45%	×	1	1		9	5	9	18	0 -	2 %	1	*	1
6	A5 Watting Rd NB - Jct MW RAB	A5 Watling Rd NB - Jct Wolvey	382m	3	9 3	8 3	39	39	0	0 %	1	1 1 A	1	39	3	7	39 4	1 -	1 - 1	* *	1	×	3	9	37	39	41	0 -	1 %	1	1	
TOTAL	M69 NB Offsilp	A5 Watling Rd NB Jct Wolvey	770m	9	6 8	9 1	08 1	120	12	13 %	· · · ·	×	1	92	8	D	85 90		7 - 8	* *	1	1	9	4	80	96 1	21	2 3	3 %	1	1	1

_						07:30 -08:30								08:	30 - 0930	0							16:30 - 18	:30			
	Description	Observ	ed	Model	ed		Validatio					Vodelled				Validatio					Modeller				Validatio		
Section	From - To	Dist.	Avg. M	in. Avg.	Max.	Actual Diff. % Diff. W	ithin 15%	Within 1 min.	Validates	Avg.	Min.	Avg.	Max.	Actual (% Diff.	Within 15%	Within '	Validates	Avg.	Min.	Avg.	Max.	Actual	% Diff.	Within 15%	Within 1	Validates
30	M69 NB Offslip	332m	48	45 5	6 63	8 17%	×	*	1	4	3	9 4	1 43	\$	- 6 9	1	1	1	46		39 .	48 6	3 3	6 %	1	1	× .
25	RAB M69 NB Off to Waling N	34m	4	3	3 3	-2 -36%	×	4	1	6		3	3 3	-2	-40%	×	1	1			3	3	3 -2	-38%	×	× 1	1 A A
26	RAB Circ Watling N	56m	9	6 1	3 18	4 44%	×	1	1	10		6 1	5 6	-4	-45%	×	1	×	ŝ		6	9 1	0	- 2 %	1	1	× 1
15	RAB - Stopine A5 Wating (N) to Rugby Rd	43m	7	4	5 5	-36%	×	×	1	ė		4 .	4 4	-1	-29%	×	1	×	6		4	4 :	5 -2	-33%	×	1	×
16	RAB Circ RugbyRd	71m	13	14 2	24	8 60%	×	1	1	1		8 1	9 11	0	1 %	4	1	1	11		8	15 2	4	36%	×	1	× .
17	RAB Rugby Road Jct to M69 NB Onsilp	15m	2	5	5 6	4 169%	×	×	1			4 .	4 4	2	114%	×	1	1	2		4	5	3 3	143%	×	1	
18	RAB Circ M69 N On to M68 S Off	68m	10	14 1	5 16	5 45%	×	1	1	9	1	2 1	2 13	3	36%	×	1	×	10	1	12	13 10	5 4	41%	×	1	× 1
19	RAB M69 SB Off to Watting Rd SB	13m	2	2	2 2	0 - 6 %	1	1	1			2 :	2 2	0	- 5 9	4	1	×			2	2 :	2 0	- 6 %	1	1	× .
9	A5 Watting Rd SB MW RAB (S) A5 Watting Rd SB (S)	743m	46	44 4	45	-2 - 3 %	1	×	1	47	4	5 4	5 45	-2	- 4 9	1	1	1	46		44 ·	45 4:	-2	- 4 %	1	1	×
TOTAL	M69 NB Offslip A5 Watting Rd SB (S)	1376m	142	136 16	181	23 1 5 %	×	×	× -	13	12	0 12	5 130	-7	- 5 9	1 - A	1	×	136	11	19 14	14 18	2 8	6 %	· ·	~	
																			-		_						
						07:30 -08:30								08:	30 - 0934	0							16:30 - 18	:30			
	Description	Observ	ed	Model	ed		Validati	on				Vadelled				Validatio	on				Modelle				Validatio	n	
Section	From - To	Dist,	Avg. M	in, Avg	Max,	Actual Diff. % Diff. W	ithin 15%	Within 1 min,	Validates	Avg.	Min,	Avg.	Max,	Actual (% Diff,	Within 15%	Within '	Validates	Avg.	Min.	Avg.	Max,	Actual (% Diff,	Within 15%	Within 1	Validates
8	Rugby Road SB - Jct Smill RAB Rugby Road SB - Jct MWRAB	631m	75	78 8	96	13 17%	×	4	1	66	6	7 6	3 69	1	2 %	1	*	*	70	e e	57 '	78 9	5 8	11%	1	× 1	× 1
17	RAB Rugby Road Jct to M69 NB Onsilp	15m	2	5	6 6	4 160%	×	1	1	:		4 .	4 4	2	114%	×	1	× .	2		4	5	3 3	143%	×	1	× 1
18	RAB Circ M69 N On to M68 S Off	68m	10	14 1	5 16	5 48%	×	×	1	1	1	2 1:	2 13	3	36%	×	1	1	10	1	12	13 1	6 4	41%	×	1	× .
19	RAB M69 SB Off to Watling Rd SB	13m	2	2	2 2	0 - 1 1 %	1	4	1	3		2 :	2 2	0	- 5 %	1	1	1	2		2	2	2 0	- 6 %	1	1	1
9	A5 Watling Rd SB MW RAB (S) A5 Watling Rd SB (S)	743m	45	44 4	45	0 - 1 %	1	1	1	43	4	5 4	5 45	-2	- 4 9	1	1	1	46	1	44	45 4	5 -2	- 4 %	1	1	1
TOTAL	Rugby Road SB Jct Smill RAB A5 Watting Rd SB (S)	1470m	133	142 15	1 164	21 16%	×	×	1	12	12	9 13	133	5	4 %	×	1	× 1	130	12	27 1.	12 16	5 13	10%	1	1	× .

								07:34	-08:30								08	1:30 - 093	0							16:30-	18:30			
	Description					Modelle				Validati	on			, r	Aodellec				Validatio					Modell	ba			Validat	ion	
Section	From	- To	Dist.	Avg.	Min.	Avg.	Max.	Actual Diff.	% Diff.	Within 15%	Within 1 min.	Validates	Avg.	Min.	Avg.	Max.	Actual	S Diff.	Within 15%	Within 1	Validates	Avg.	Min.	Avg	. Max	Actus	I (% Diff.			Validates
10	A5 Watling Rd NB (S)	A5 Watling Rd NB MW RAB (S)	748m	102	85	90	92	-12	- 1 2	% 🖌	×	*	78	8	6 9	1 96	13	16%	×	•	×	9	0	85	90 1	16	0 0 %	× .	1	× .
21	RAB Walling S to Hinkley Rd SB		27m	2	2	2	2	0	6 %	×	×	1	2		2	2 2	0	- 1 9	1	× .	× .		2	2	2	2	0 2 %	1	1	
22	RAB Circ Hinkley		82m	6	7	8	9	2	25%	×	1	1	e		6	7 7	0	7 %	1	1	1		6	6	7	9	1 16%	×	1	× 1
23	RAB Hinkley Rd to M68 SB		16m	2	1	1	1	0	- 7 5	× •	1	1	1		1	1 1	0	13%	1	1	×		1	1	1	1	0 2 %	1	1	× .
24	RAB Circ M65 S		104m	17	12	13	14	-3	-21%	×	1	1	13	1	2 1	2 12	-1	- 7 9	1	1	×	1	5	12	13	4	2 - 1 5	i % 🖌	1	×
25	RAB M69 NB Off to Waling N		34m	4	3	3	3	-2	-36%	×	×	1 1 C	6		3	3 3	-2	-40%	×	1	 Image: A second s		5	3	3	3	-38%	×	1	
26	RAB Circ Walting N		56m	9	6	13	18	4	44%	×	1	1	10		5	5 E	-4	-45%	×	1	1		9	5	9 .	18	0 - 2	× 🖌	1	× .
15	RAB - Stopine A5 Wating (N) to Rugby Ro	1	43m	7	4	5	5	-3	-36%	×	1	1			4	4 4	-1	-29%	×	1	× .		6	4	4	5	·2 ·33%	×	1	1 A A
7	Rugby Road NB - Jct NW RAB	Rugby Road NB - Jct Smil RAB	644m	42	46	47	47	5	123	1	1	1	43	4	4 4	5 46	2	5 %	1	1	×	4	2	44	46 /	17	4 8 %	1	1	× .
TOTAL	A5 Watling Rd NB (S)	 Rugby Road NB Jct Smll RAB 	1755m	191	167	181	192	-10	- 5 1	* *	×	4	163	16	3 17	0 177	7	4 %	× .	~	× .	17	7 1	62 ·	176 19	16	1 1	× *	1	×
																						-			_		_	_	_	
								07:30	-08:30	1							08	:30 - 093	0							16:30-	18:30			
	Des	cription	Obser	ved		Modella	:d			Validati	on				Aodellec	1			Validatio	n				Modell	ed			Validat	ion	
Section				Avg.	Min,	Avg.	Max.	Actual Diff.	% Diff.	Within 15%	Within 1 min.	Validates	Avg.	Min.	Avg.			s Diff.	Within 15%	Within 1	Validates	Avg.	Min.	Avg	Max		I S Diff.	Within 15%	Within	Validates
14	Hinkley Road NB JCt Hinkley Road	Hinkley Road NB JCt MW RAB	546m	69	94	129	177	60	88%	×	×	×	45	5	2 5	6 59	6	13%	1		× .	6	2	52	92 17	7	48%	×	1	×
23	RAB Hinkley Rd to M68 SB		16m	1	1	1	1	0	- 2 5	* *	1	1	1		1	1 1	0	13%	1	× 1	×		1	1	1	1	0 2 %	1	1	1
24	RAB Circ M65 S		104m	15	12	13	14	-2	-16%	×	1	1	13	1	2 1	2 12	-1	- 7 9	× *	× 1	× .	1	5	12	13	14	2 - 1 5	s 🛪 🖌	1	× .
25	RAB M69 NB Off to Waling N		34m	5	3	3	3	-2	-38%	×	×	1	5		3	3 3	-2	-40%	×	1	×		5	3	3	3	2 -38%	×	1	× .
6	A5 Watting Rd NB - Jct MW RAB	A5 Watting Rd NB - Jct Wolvey	382m	39	38	39	39	-1	- 2 3	s 🖌	×	1	39	3	7 3	9 41	-1	- 1 9	1	1	1	3	9	37	39	н	0 - 1	× 1	1	 Image: A second s
TOTAL	Hinkley Road NB JCt Hinkley Road	A5 Watting Rd NB Jct Wolvey	1083m	130	149	185	234	56	439	5 X	 ✓ 	1	105	10	5 11	1 116	3	3 %	×	· ·	×	12	2 1	05 ·	148 23	15 1	6 21	% ×	1	

							07:30	-08:30									8:30 - 093	30							16:30-	18:30			
	Description	Observe	be	M	odelled				Validati	ion				Modell	ed			Validatio	n			N 1	lodelled				Validati	on	
Section	From - To	Dist, A	Avg. N	lin, A	vg. N	Max,	Actual Diff.	% Diff.	Within 15%	Within 1 min,	Validates	Avg.	Min.	Avg	Max,	Actua	I S Diff.	Within 15%	Within 1	Validates	Avg.	Min.	Avg.	Max,	Actua	t % Diff.	Within 15%	Within	Validates
5	A5 Watting Rd SB - Jct Wolvey A5 Watting Rd SB - Jct MW RAB	394m	92	69	93	115	2	2 %	1	1	1	7:	4	15	47 5	0 4	5 -35%	×	1	× .	82	4	5 70	11	i -1	2 - 1 4	× 🖌	1 V	
15	RAB - Stopline A5 Wating (N) to Rugby Rd	43m	7	4	6	6	-3	-36%	×	1	1	6		4	4	4 -	1 -29%	×	× 1	×	6		4 4	1	5	-33%	×	1	
16	RAB Circ RugbyRd	71m	13	14	21	24	8	60%	x	×	*	*		8	9 1	1	0 1%	1	*	×	11		8 15	5 2		4 36%	×	×	× 1
17	RAB Rugby Road Jct to M69 NB Onsip	15m	2	5	6	6	4	169%	x	1	1	:		4	4	4	2 114%	×	1	 Image: A second s	2		4 6	5	3 :	143%	×	1	× .
18	RAB Circ M69 N On to M68 S Off	68m	10	14	15	16	5	45%	x	1	1	9	1	12	12 1	3	3 36%	×	1	1	10	1:	2 13	8 1	5	41%	×	1	1 A A
19	RAB M69 SB Off to Watjing Rd SB	13m	2	2	2	2	0	- 6 3	* *	1	1	2		2	2	2	0 - 5 1	* *	× 1	×	2		2 5	2	2 1	- 6	× •	1	
20	RAB CIRC Wating Road	103m	16	14	14	14	-2	- 12	% 🖌	×	*	18	1	13	13 1	4	2 - 1 2	8 🖌	*	×	15	1	3 14	1		2 - 1 2	% 1	× 1	*
21	RAB Walling S to Hinkley Rd SB	27m	2	2	2	2	0	6 %	1	1	1	1		2	2	2	0 - 1 5	* *	1	 	2		2 2	2	2 1	2 %	1	1	× .
11	Hinkley Road SB JCt MW RAB Hinkley Road SB JCt Hinkley Road	575m	38	46	48	48	9	24%	x	1	1	3	4	13	44 4	6	7 20%	×	1	1	37	4	3 46	5 4	3	22%	x	1	1 1 A
TOTAL	A5 Watling Rd SB Jct Wolvey Hinkley Road SB JCt Hinkley Road	1310m	182	160	205	233	23	129	× *	1	•	15	1	и –	137 14	5 -1	6 - 10) % 🖌	×	×	168	13	1 171	23	8	4 2 %	× .	× 1	

Project Name	Hinckley National Rail Freight Interchange		
Document Number	HNRFI-BWB-GEN-XX-RP-TR-0005-M69 J2 Updated LMVR	BWB Ref	NTT2814
Author	DB	Status	S4
Checked	LB	Revision	P01
Approved	LB	Date	05/01/2021

1. INTRODUCTION

- 1.1 This Technical Note (TN) details microsimulation modelling undertaken by BWB to review and update an existing M69 J2 VISSIM model in support of the proposed National Rail Freight Interchange (NRFI) in Hinckey, Leicestershire.
- 1.2 The proposed development location is shown in Figure 1.

Figure 1 – Proposed NRFI Site Location

2. EXISTING M69 J2 VISSIM MODEL

2.1 BWB have received a VISSIM model of M69 J2 that has been approved for use by both Highways England (HE) and Leicestershire County Council (LCC). The extents of the model are shown in **Figure 2**.

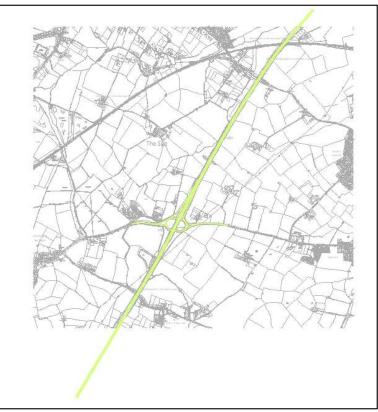


Figure 2 – M69 J2 VISSIM Model

2.2 However, before this model has been adopted for use, a review of the model has been undertaken. This has been done to ensure that BWB are content with the model build and levels of calibration and validation prior to being used in support of the Hinckley NRFI.

Model Review

- 2.3 BWB's review of the M69 J2 model has identified a number of elements within the model which could be further improved upon. These would help both with the base model calibration and validation and the future year testing.
- 2.4 The elements for further improvement are detailed in **Table 1**.

TECHNICAL NOTE Hinckley National Rail Freight Interchange

Table 1 – Existing	Model Elements to Improve

No.	Model Element	Comments
1	Links / Connectors	Use of 'Right-Side Rule' on the circulatory links – these should be set to 'Urban (motorised)' Link/Connector set-up on the South-East and North-West sections where the approaches meet the circulatory could be improved by removing the mix of 'no lane change' on links and use of small connectors to control lane usage and on the North-West approach, ensuring the connectors match the lane markings. Examples of these elements are shown below.

2	Reduced Speed Areas	There are a number of long Reduced Speed Areas on the circulatory, which have been used to control the speed of vehicles. RSAs should be limited to smaller sections and the use of Desired Speed Decision markers is considered a better form of vehicle speed over long sections.
3	Priority Rules	The configuration of the priority rules are different to normal modelling practice, with the conflict markers being applied to specific vehicles, rather than 'All Vehicles'. An example for Light Vehicles on the B4669 West approach is shown below. To ensure a more simplified approach (and to avoid any potential issues in the future year modelling), the priority rules will be split into Lights and Heavies and the conflict markers will apply to 'All Vehicles'.

3. UPDATED M69 J2 VISSIM MODEL

- 3.1 As a result of the model review undertaken, an updated version of the M69 J2 model has been developed that addresses the modelling elements noted.
- 3.2 These changes have also been made in line with a new VISSIM model being developed for M69 J1, as part of the same project. This has ensured consistency between the models in terms of the base data and parameters used.

Model Changes

- 3.3 A detailed breakdown of all of the changes made to the model is provided in the VISSIM Log in **Appendix A**. As a summary, the main changes in the model include:
 - The model has been updated to the latest stable version of VISSIM VISSIM 2020 (SP09).
 - The PM period simulated has been amended to 1600-1900hrs, with 1630-1730hrs and 1730-1830hrs identified as the network-wide peak hours. As a result, updated Vehicle Inputs and Static Route flows have been calculated to suit the new simulation period.
 - A number of Base Data elements have been updated to match the M69 J1 model. These notably include 2D/3D models, Time/Desired Speed and 2D/3D Model Distributions, Driver Behaviour, Vehicle Types/Classes/Compositions and Link Behaviour Types.
 - The link and connector structure on the circulatory has been reviewed and updated based on OS and Topographical mapping. This has included a review of the B4669 West approach to better suit the lane markings and the inclusion of separate connectors on the M69 North and B4669 East approaches, to help with realistic lane use both on the approach and the circulatory. The behaviour has also been amended from 'Right-Side Rule' to 'Urban (motorised)' on the circulatory links as this is considered a more suitable behaviour.
 - An update of the Reduced Speed Areas (RSAs) has been undertaken. RSAs now only feature on the junction approaches and the B4669 East and West exit bends. The circulatory speed is now controlled by new Desired Speed Decision markers on the M69 and B4669 entries to the circulatory.
 - The Priority Rules (PRs) have been reconfigured to a more conventional setup, with gap times for Light and Heavy Vehicles of 3.0s and 3.5s respectively.
 - During the calibration and validation process, it was necessary to amend the Desired Speed Distributions for the 60mph National Speed Limit (Single Carriageway) and the 70mph Motorway profiles. This was a result of the

distributions leading to journey times which were too slow on certain sections of the network. Therefore, a new set of Speed Distributions (No. 10000-10006 & 11000-11005) have been created and used, where the lower speed bands have been removed (see **Appendix B** for the changes). This approach is considered reasonable as the very low speeds are unrealistic for a vehicle travelling in free-flow conditions for the given speed limits.

Model Specification

- 3.4 The specification for the updated M69 J2 VISSIM model is as follows:
 - VISSIM Version 2020 (SP09)
 - Model Base Year 2017
 - Model Time Periods:
 - Weekday AM 07:00-07:30 (warm-up), 07:30-09:30 (peak period/s), 09:30-10:00 (cool-down)
 - Weekday PM 16:00-16:30 (warm-up), 16:30-18:30 (peak period/s), 18:30-19:00 (cool-down)
 - Vehicle Types Used:
 - o Cars
 - o LGV
 - OGV1 & OGV2
 - o Buses & Coaches
 - o Motorcycles

Model Calibration

3.5 Having made a number of changes to the model, a recalibration exercise was required to ensure that the model still performed as observed traffic conditions. For this model, traffic flows and maximum (average) queue lengths have been used as calibration measures.

Traffic Flows

- 3.6 Manual Classified Count (MCC) surveys were previously undertaken on 23rd November 2017 at M69 J2 and these have been used to inform the flows in the model.
- 3.7 Link counts from 23rd November 2017 have been collected from HE's Webtris website at the following site locations:
 - M69 Mainline (M69/8147A) Northbound
 - M69 Mainline (M69/8147B) Southbound
 - o M69 J2 On-Slip (M69/8147K) Northbound
 - M69 J2 Off-Slip (M69/8147L) Southbound

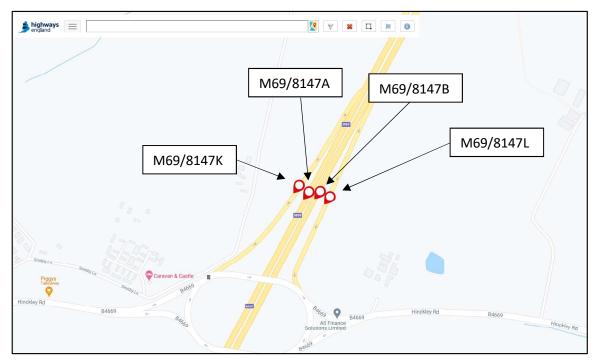


Figure 3 – Link Count Locations

- 3.8 For this model update, the M69 mainline flows have formed part of the flow calibration and the slip road flows were used a validation measure.
- 3.9 The process of flow calibration has involved iterations of minor adjustments to priority control and approach behaviour at key locations and on key routes. The calculated GEH statistic for the observed and modelled flows was considered for both the junction turning count and M69 mainline counts in accordance with the criteria stated in TAG Unit 3.1. To consider day to day variation in driver behaviour, the models were run, and results averaged over twenty random seeds. **Tables 2-7** summarise the flow calibration results for the AM and PM peak periods assessed.
- 3.10 For transparency, completeness and robustness, these results also include a comparison against the TfL criteria for key links, using a GEH value of 3 or under. The results show that all peak periods assessed achieves the ideal minimum 85% count, demonstrating that a strong flow calibration result has been achieved. A full breakdown of model calibration results can be found in **Appendix C**.

AM Peak (07:30-08:30) Summary - ALL	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	3
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 2 – AM Flow Calibration – 0730-0830hrs

Table 3 – AM Flow Calibration – 0830-0930hrs

AM Peak (08:30-09:30) Summary - A	LL
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 4 – AM Flow Calibration – 0730-0930hrs

AM Peak (07:30-09:30) Summary - ALL	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 5 – PM Flow Calibration – 1630-1730hrs

PM Peak (16:30-17:30) Summary - ALL	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 6 – PM Flow Calibration – 1730-1830hrs

PM Peak (17:30-18:30) Summary - ALL	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 7 - PM Flow Calibration - 1630-1830hrs

PM Peak (17:30-18:30) Summary - ALL	-
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Queue Lengths

- 3.11 Queue length surveys were carried out at M69 J2 at the same time as the turning counts.
- 3.12 Queue comparisons are used as a calibration aid rather than validation criteria as a result of the subjective nature of human queue measurement within the survey data and the technical difference with how queue lengths are measured within VISSIM. This is particularly true when measuring queue lengths from a give-way line rather than from a signal stop line, as this will usually result in a harder to define rolling queue condition.
- 3.13 The observed queue lengths were recorded in vehicles for each approach; however, the survey data did not distinguish between light and heavy vehicles. Therefore, as the majority of the queuing vehicles were likely to be light vehicles, a factor of 6 has been applied to the survey data counts.
- 3.14 Queue lengths were output from the VISSIM model using the default queue criteria and average over 20 random seeds for both peak periods.
- 3.15 Overall, the results show that the modelled queues are broadly comparable with the observed data, although there are some variations. Some of this is down to inherent differences between the human onsite measures and software measures within the models, suggesting there is a subjective and difficult to define nature to queue length measurements.
- 3.16 Graphical comparisons of the maximum (average) queue lengths are provided in **Appendix D**.

Model Validation

- 3.17 As well as model calibration, a validation exercise has also been undertaken. This summarises the goodness of fit between modelled and observed outputs against independently collected data.
- 3.18 For this model, two independent datasets have been used:
 - M69 Slip Road Link Counts from HE's Webtris website
 - Journey Time data from TomTom

Link Validation

- 3.19 As detailed in Paragraph 3.7, slip road data from 23rd November 2017 has been collected and used as a flow validation measure. This has been subject to the same GEH statistic comparisons as detailed in TAG Unit 3.1, as well as a comparison against TfL's criteria for critical links. The results of the Slip Road Flow Validation are shown in **Tables 8-13**, with more detailed results provided in **Appendix E**.
- 3.20 The link validation shows that in both peak periods, the M69 off-slip flow falls outside of TfL's critical link GEH criteria of 3, but is still within 5 as required by TAG.

Table 8 –	AM Link	Validation -	0730-0830hrs
		Vanaanon	0/00-00001113

AM Peak (07:30-08:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	2
% of ∀ISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 9 – AM Link Validation – 0830-0930hrs

AM Peak (08:30-09:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 10 – AM Link Validation – 0730-0930hrs

AM Peak (07:30-09:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	1
% of VISSIM counts with GEH <3	50.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 11 - PM Flow Validation - 1630-1730hrs

PM Peak (16:30-17:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	1
% of VISSIM counts with GEH <3	50.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 12 – PM Flow Validation – 1730-1830hrs

PM Peak (17:30-18:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Table 13 - PM Flow Validation - 1630-1830hrs

PM Peak (16:30-18:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	1
% of VISSIM counts with GEH <3	50.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Journey Time Validation

- 3.21 The journey time validation has been carried out using TomTom data collected for the network. This was chosen as it provides a high sample rate dataset which improves the overall robustness of the validation comparison.
- 3.22 The TomTom data is from April 2019, with 10th April 2019 the specific day-data. This was extracted for both M69 J1 and M69 J2. Whilst the data could have been extracted for November 2017 to tie in with the existing counts, the different dates allowed a more robust validation exercise to be undertaken.
- 3.23 The data is provided in small link sections, so for the purpose of providing journey time validation, multiple sections have been combined into longer journey routes, covering all major movements at key locations.

3.24 A total of 8 journey time routes have been prepared for the purpose of model validation. **Figure 4** shows the location of four, primary through routes. **Figure 5** shows the location of four secondary turning routes.

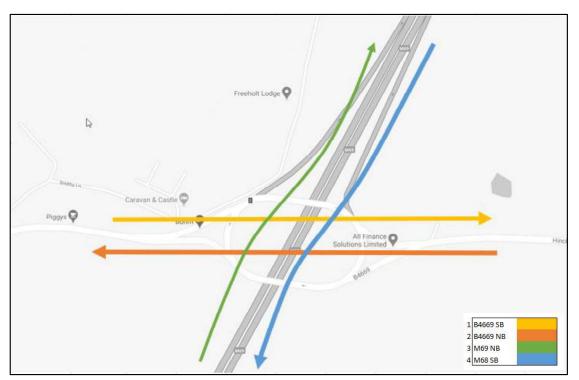


Figure 4 – TomTom Journey Time Routes – Primary Through Routes

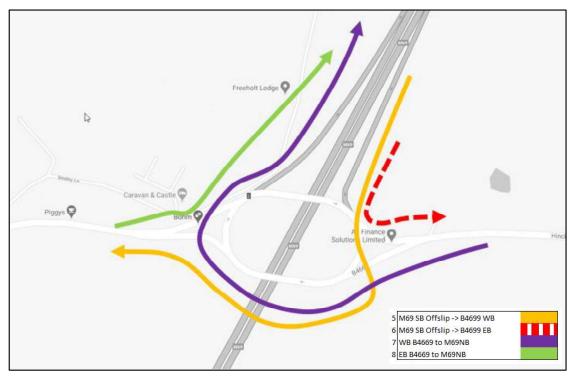


Figure 5 – TomTom Journey Time Routes – Secondary Turning Routes

3.25 **Tables 14 and 15** show the overall summary for all journey time routes and sections for the network. A more detailed breakdown of the journey time results can be found in **Appendix F**.

Table 14 – AM Journey Time Validation

Whole Routes	AM Peak							
Criteria	07:30-08:30	08:30-09:30	07:30-09:30					
85% of measures within 15%	100%	100%	100%					
85% of measures within 60 seconds	100%	100%	100%					

Table 15 – PM Journey Time Validation

Whole Routes	PM Peak							
Criteria	16:30-17:30 17:30-18:30 16:30-18:30							
85% of measures within 15%	88%	88%	88%					
85% of measures within 60 seconds	100%	100%	100%					

- 3.26 In accordance with TAG Unit 3.1 criteria, which recommends that the difference between observed and modelled journey times should be within 15% (or 1 minute if higher) for at least 85% of the routes evaluated (although that criteria is ideally designed for route sections over 3km and under 15km in length) it can be seen from **Tables 14 and 15** that both the AM and PM peak models meet the validation criteria.
- 3.27 In the AM peak, across the time periods 0730-0830hrs and 0830-0930hrs, 16/16 routes are within 15% and 60s. Across the full AM period of 0730-0930hrs, 8/8 routes are within 15% and 60s. In the PM peak, across the time periods 1630-1730hrs and 1730-1830hrs, 15/16 routes are within 15% and 16/16 routes are within 60s. The only route that is not within 15% is the M69 Northbound, where the model is slightly slower and has a 17% difference. Across the full PM period of 1630-1830hrs, 7/8 of the routes are within 15% and 8/8 routes are within 60s. The route that is again outside of the 15% difference is the M69 Northbound, where the difference is 17%. in total.
- 3.28 Overall, this is a very robust validation result, indicative of a good likeness between modelled performance and on-street conditions.

4. SUMMARY & CONCLUSIONS

Summary

4.1 This TN details the review of an existing M69 J2 VISSIM model and the subsequent model updates, recalibration and revalidation to demonstrate that the model is an accurate representation of the highway network within the study area and is fit for purpose for testing impacts associated with the proposed National Rail Freight Interchange (NRFI) in Hinckey, Leicestershire.

- 4.2 The updates to the model have been made to adopt more standard modelling practices, as well as to ensure the model is representative of on-site conditions and lane markings.
- 4.3 The recalibration and revalidation exercise has been undertaken to ensure that the changes made accurately reflects existing conditions with regards to:
 - Traffic patterns;
 - Key junctions; and
 - Traffic volumes and routing.
- 4.4 In regard to the traffic turning and flow counts, the model exceeds the 85% criteria set by DMRB. Comparisons have also been made to queue lengths and these are broadly comparable with the observed data.
- 4.5 The model has also been validated to slip road flows and observed journey times within the extents of the network. Whilst the slip road flows fall outside of TfL's GEH criteria, they are within TAG's GEH criteria and are considered representative.
- 4.6 The journey time data has been provided as 15-minute intervals and an average onehour journey time intervals have been used foreach of the peak periods. The journey time comparisons show consistency between the modelled and observed journey time profiles across all of the journey time routes in the AM peak. In the PM peak, only one route out of the eight assessed falls outside of the 15% range. However, all of the routes are within 60s and as such, the journey times are considered representative.
- 4.7 Given that the traffic flows and journey times compare well with on-site conditions, it should be considered a successful calibration and validation exercise.

Conclusions

4.8 It is understood that as these conditions are met and are of a sufficient quality to represent real world conditions, the updated M69 Junction 2 VISSIM model is considered robust and acceptable for testing of the proposed development.

APPENDICES

APPENDIX 1: VISSIM Changes Log

Hinckley – M69 J2 – VISSIM MODEL UPDATE LOG

Base Network

2D/3D Models

- Updated to match M69 J1 model
 - Added:
 - No. 16 'LGV Toyota Pickup'
 - No. 33 'Bus C2 Standard 2-doors left'
 - No. 64 'Bike Cycle Woman'
 - \circ Edited
 - No. 15 'LGV Ford Pickup' updated v3d reference
 - No. 17 'Ford Van' to 'Chevy Van' updated v3d reference & axle position
 - No. 21 'OGV1 2ax Rigid' updated v3d reference
 - No. 22 'OGV1 3ax Rigid' updated v3d reference
 - No. 23 'OGV2 3ax Articulated' updated v3d reference
 - No. 24 'OGV2 4ax Articulated' updated v3d reference
 - No. 32 'Bus Coach' updated v3d reference

Distributions

- Time Updated all distributions to match those in M69 J1 model
- Desired Speeds
 - Updated 20mph, 30mph, 60mph [Single CWay] (except LGV), 70mph [MWay] (except Bus) distributions to match those in M69 J1 model
 - Added 50mph profiles based on M69 J1 model
 - Capping of 60mph [Single CWay] and 70mph [MWay] as part of Journey Time validation
 - 2D/3D Model Distributions Updated to match M69 J1 model
 - \circ Updated No. 11 LGV
 - \circ Added No. 31 Coach
 - Updated No. 61 Bike

Driving Behaviour

- Updated the following to match M69 J1 model:
 - o 'Urban (motorised)'
 - Following, Lateral, Signal Control tabs
 - 'Right-side rule (motorized)'
 - Updated name to 'Left-side rule (motorized)', amended Lane Change, Signal Control tabs
 - 'Freeway (free lane selection)'
 - Lane Change, Signal Control
 - 'Footpath (no interaction)'
 - Lane Change, Signal Control
 - 'Cycle-Track (free overtaking)'
 - Lane Change, Signal Control
- Created the following behaviours, based on M69 J1 model:
 - No. 6 Urban (cyclists)
 - No. 7 Urban (Aggressive merge)
 - No. 9 Urban (aggressive merge)

Vehicle Types

- Updated Color Dist1, OccupDist and Capacity values to match M69 J1
- Added No. 310 Coach

Vehicle Classes

- Created No. 22 HGV, No. 31 Coach, No. 101 Lights (Controls) and No. 102 Heavies (Controls)
- Updated VehTypes assignment to match M69 J1 model

Link Behaviour Types

- Added specific driver behaviour to Vehicle Classes for 'Urban (motorized)'
- Renamed No. 2 'M69 Left-side rule (motorized)'
- Added No. 6 'Urban (merge/diverge)'

Display Types

- Updated No. 1 'Road (Urban) to match M69 J1 model
- Added No. 2 'Road (Urban merge/diverge)' and No. 3 'Road (M69)'

Levels

- Added No. 3 – 'Mapping'

Vehicle Compositions

- Added No. 22 – HGV, No. 31 – Coach, No. 61 – PCY

Background Images

- Removed current DWG and added:
 - o 07700-HYD-A-00-M2-D-0003 OS.dwg
 - o 07700-HYD-A-00-M2-D-0006 Topo.dwg

<u>Links</u>

- Updated M69 mainline and merge/diverge sections
 - Better tie to mapping
 - \circ ~ Updated to using 0.1m lane for merge/diverge sections
- Reconfigured approach and circulatory sections to match road markings
 - Better tie to mapping
 - Removal of small connectors and 'No Lane Change'. Instead, split connectors on North and East approaches to control lane use
 - \circ $\;$ Adjusted West approach to better match lane markings $\;$
- Link 10020 amended from 20/150 to 5/200 (stop/lane change)
- Link 10018 amended lane change from 100 to 200m
- Link 10052 Lane change 200 to 120m
- Link 10018 Lane change 200 to 120m
- Link 10071 Lane change 200 to 90m
- Link 10076 Lane change 200 to 90m
- Link 10068 Lane change 200 to 90m
- Link 10073 Lane change 200 to 90m

Desired Speed Decisions

- Updated all markers to include Coach
- Added new 40mph speed markers on circulatory entry and 60mph speed markers on East and West exits

Reduced Speed Areas

- Deleted all RSAs in the network
- Introduced new RSAs on approaches and on East and West exit bends

Priority Rules

- Deleted all PRs in the network
- Added new PRs, using 'Lights' and 'Heavies' as control used default values of 3.0s and 3.5s

Vehicle Inputs

- Added names to inputs

Static Routes

- Added names to routes & repositioned points to start and end of network
- Added static routes for M69 N for MCY
- Updated static routes to account for 1600-1900hrs time period (with 1630-1830hrs assessment)
- Updated static routes to account for North and East approach connectors being split

Journey Time Markers

- Deleted current markers
- Added new markers to suit TomTom data locations (Sections 1-18)

Queue Markers

- Added new markers to North, East and West approaches at J2.

Data Collection Points

- Added new markers and measurements for TRADS data comparisons – M69 mainline and slip roads

Modification 1 – AM Peak

Vehicle Inputs

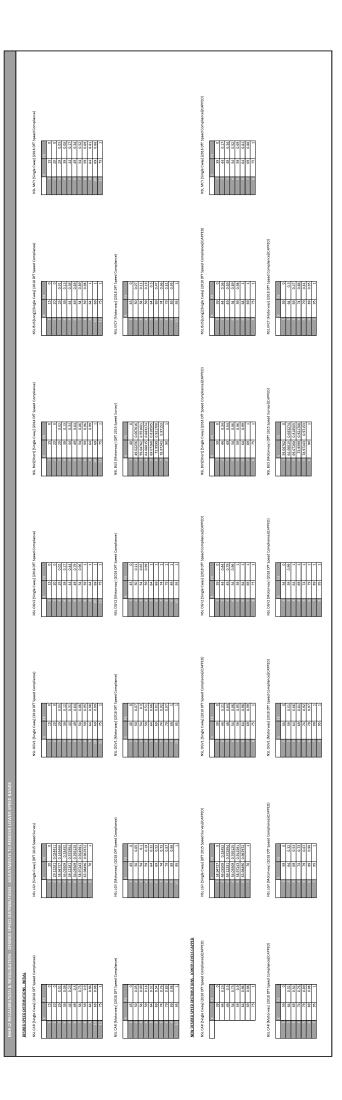
- Updated to match MG calcs

Static Routes

- Updated to match MG calcs
- Made adjustments to Route 16 for better validation of TRADS slip road flow

Modification 2 – PM Peak

Vehicle Inputs


- Updated to match MG calcs

Static Routes

- Updated to match MG calcs
- Made adjustments to Route 16 for better validation of TRADS slip road flow

APPENDIX 2: Desired Speed Distribution Changes

BETTER SOLUTIONS, INTELLIGENTLY ENGINEERED

APPENDIX 3: Flow Calibration

AM Peak (07:30-08:30) Summary - ALL	÷
Total number of counts considered	
VISSIM model counts with GEH <3	
% of VISSIM counts with GEH <3	100.009
VISSIM model counts with GEH <5	
% of VISSIM counts with GEH <5	100.009
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

TIMEINT 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400

	Junction/ Movement		Vehicle Flow		Difference		GEH Criteria Met			Flow Criteria Met			
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
	M69 North	B4669 East	46	47	1	2%	Y	0.15	~	×			
	10169 1001 111	B4669 West	197	221	24	12%	Y	1.66	×	×			
M69 J2	B4669 East	B4669 West	363	363	0	0%	Y	0.00	1	×			
10109 12	B4009 East	M69 North	226	224	-2	-1%	Y	0.13	×	×			
	B4669 West	M69 North	502	506	4	1%	Y	0.18	 Image: A set of the set of the	✓			
	B4009 West	B4669 East	195	193	-2	-1%	Y	0.14	 Image: A second s	 Image: A second s			
M69	M69 Mainline	Northbound	2253	2259	6	0%	Y	0.13	×	 Image: A second s			
10109	wide widthine	Southbound	2847	2839	-8	0%	Y	0.15	×	 Image: A second s			

AM Peak (07:30-08:30) Summary - LIGHTS

Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

TIMEINT 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400

	Junction/ Movement		Junction/ Movement Vehicle Flow Difference GE				GEH Criteria Met			Flow Criteria Met			
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
	M69 North	B4669 East	44	45	1	2%	Y	0.15	×	 ✓ 		1	
	NIG9 NOT LI	B4669 West	188	213	25	13%	Y	1.77	×	×			
M69 J2	B4669 East	B4669 West	355	356	1	0%	Y	0.05	1	1			
10109 12	B4009 East	M69 North	216	213	-3	-1%	Y	0.20	×	×			
	B4669 West	M69 North	495	499	4	1%	Y	0.18	1	×			
	B4669 West	B4669 East	191	189	-2	-1%	Y	0.15	1	1			
M69	MCO Mainlina	Northbound	2049	2054	5	0%	Y	0.11	1	1			
10109	M69 Mainline	Southbound	2599	2588	-11	0%	Y	0.22	×	×			

AM Peak (07:30-08:30) Summary - HEAVIES					
Total number of counts considered	8				
VISSIM model counts with GEH <3	8				
% of VISSIM counts with GEH <3	100.00%				
VISSIM model counts with GEH <5	8				
% of VISSIM counts with GEH <5	100.00%				
VISSIM model counts with GEH <10	8				
% of VISSIM counts with GEH <10	100.00%				
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8				
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%				

TIMEINT 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400

	Junction/	' Movement	Vehic	le Flow	Differ	ence	GEH C	riteria N	1et	F	low Cri	teria Me	t
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
	M69 North	B4669 East	2	2	0	0%	Y	0.00	1	√			
	NIB9 NOT LI	B4669 West	9	9	0	0%	Y	0.00	×	×			
M69 J2	B4669 East	B4669 West	8	7	-1	-13%	Y	0.37	1	×			
10109 12	B4009 East	M69 North	10	11	1	10%	Y	0.31	 Image: A second s	 Image: A second s			
	B4669 West	M69 North	7	7	0	0%	Y	0.00	×	 Image: A set of the set of the			
	B4009 West	B4669 East	4	4	0	0%	Y	0.00	×	×			
M69	M69 Mainline	Northbound	204	205	1	0%	Y	0.07	×	 Image: A second s			
10109	wos wainine	Southbound	248	250	2	1%	Y	0.13	 Image: A second s	 Image: A second s			

AM Peak (08:30-09:30) Summary - ALL					
Total number of counts considered	8				
VISSIM model counts with GEH <3	8				
% of VISSIM counts with GEH <3	100.00%				
VISSIM model counts with GEH <5	8				
% of VISSIM counts with GEH <5	100.00%				
VISSIM model counts with GEH <10	8				
% of VISSIM counts with GEH <10	100.00%				
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8				
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%				

TIMEINT 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000

	Junction/	Movement	Vehic	le Flow	Differe	ence	GEH Cr	iteria N	/let		Flow Cri	iteria Me	et
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
	M69 North	B4669 East	48	50	2	4%	N	0.29	1	×			
	Miby North	B4669 West	182	198	16	9%	N	1.16	1	×			
M69 J2	B4669 East	B4669 West	303	306	3	1%	N	0.17	1	1			
10109 12	B4009 East	M69 North	114	114	0	0%	N	0.00	1	×			
	B4669 West	M69 North	292	293	1	0%	N	0.06	1	×			
	B4005 West	B4669 East	173	175	2	1%	N	0.15	1	 ✓ 			
M69	M69 Mainline	Northbound	1994	1993	-1	0%	N	0.02	1	×			
10103		Southbound	2302	2299	-3	0%	N	0.06	~	√			

AM Peak (08:30-09:30) Summary - LIGHTS

Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

TIMEINT 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000

	Junctio	on/ Movement	Vehic	Vehicle Flow		Difference		GEH Criteria Met		Flow Criteria Met			et
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
	M69 North	B4669 East	38	39	1	3%	N	0.16	1	✓			
	NIG9 NOTUT	B4669 West	173	190	17	10%	N	1.26	× .	×			
M69 J2	B4669 East	B4669 West	291	294	3	1%	N	0.18	1	×			
10109 12	D4009 Edst	M69 North	105	106	1	1%	N	0.10	×	 Image: A set of the set of the			
Γ	B4669 West	M69 North	287	288	1	0%	N	0.06	1	 Image: A set of the set of the			
	D4009 West	B4669 East	171	173	2	1%	N	0.15	1	×			
M69	M69 Mainline	Northbound	1727	1728	1	0%	N	0.02	1	×			
10169	wib9 wainline	Southbound	2044	2042	-2	0%	N	0.04	1	×			

AM Peak (08:30-09:30) Summary - HEAVIES	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

TIMEINT 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000

		Junction/	Movement	Vehicle Flow		Difference		GEH Cr	/let	Flow Criteria Met				
	Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
00		M69 North	B4669 East	10	11	1	10%	N	0.31	~	 ✓ 			
00		NIG9 NOTIT	B4669 West	9	8	-1	-11%	N	0.34	×	×			
00	M69 J2	B4669 East	B4669 West	12	12	0	0%	N	0.00	1	×			
00	10109 12	B4009 East	M69 North	9	9	0	0%	N	0.00	×	<			
00		B4669 West	M69 North	5	5	0	0%	N	0.00	×	~			
00		B4005 West	B4669 East	2	2	0	0%	N	0.00	 Image: A set of the set of the	 Image: A set of the set of the			
00	M69	M69 Mainline	Northbound	267	266	-1	0%	N	0.06	×	~			
00	10109	Nige Mainline	Southbound	258	257	-1	0%	N	0.06	×	~			

AM Peak (07:30-09:30) Summary - AL	
Total number of counts considered	
VISSIM model counts with GEH <3	
% of VISSIM counts with GEH <3	100.00
VISSIM model counts with GEH <5	
% of VISSIM counts with GEH <5	100.00
VISSIM model counts with GEH <10	
% of VISSIM counts with GEH <10	100.00
VISSIM model counts meeting WebTAG Unit 3.1 criteria	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.0

	Junction/ Movement		Vehic	Vehicle Flow		Difference		GEH Criteria Met				Flow Criteria Met			
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700		
	M69 North	B4669 East	94	97	3	3%	N	0.31	×	1					
	MIB9 MORTH	B4669 West	379	419	40	11%	N	2.00	×	1					
M69 J2	B4669 East	B4669 West	666	669	3	0%	N	0.12	×	1					
10109 12	B4009 East	M69 North	340	338	-2	-1%	N	0.11	×	× .					
	B4669 West	M69 North	794	799	5	1%	N	0.18	 Image: A set of the set of the	1					
	B4009 West	B4669 East	368	368	0	0%	N	0.00	×	×					
M69	M69 Mainline	Northbound	4247	4252	5	0%	N	0.08	×	1					
10109	wide wiainine	Southbound	5149	5138	-11	0%	N	0.15	 Image: A set of the set of the	 Image: A second s					

AM Peak (07:30-09:30) Summary - LIGHTS

Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Junction/ Movement		Vehicle Flow		Difference		GEH Criteria Met			Flow Criteria Met			
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
	M69 North	B4669 East	82	84	2	2%	N	0.22	×	1			
		B4669 West	361	403	42	12%	N	2.15	×	×			
M69 J2	B4669 East	B4669 West	646	650	4	1%	N	0.16	1	×			
10109 32	B4009 East	M69 North	321	319	-2	-1%	N	0.11	 Image: A second s	×			
	B4669 West	M69 North	782	787	5	1%	N	0.18	 Image: A set of the set of the	1			
	B4005 West	B4669 East	362	362	0	0%	N	0.00	 Image: A second s	×			
M69	M69 Mainline	Northbound	3776	3782	6	0%	N	0.10	×	×			
10109	Wide Walline	Southbound	4643	4630	-13	0%	N	0.19	 Image: A second s	×			

AM Peak (07:30-09:30) Summary - HEAVIES	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Junction/ Movement		Vehicle Flow		Difference		GEH Criteria Met			Flow Criteria Met			
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
	M69 North	B4669 East	12	13	1	8%	N	0.28	~	1			
	10169 1001111	B4669 West	18	17	-1	-6%	N	0.24	1	1			
M69 J2	B4669 East	B4669 West	20	19	-1	-5%	N	0.23	~	1			
IVI09 J2	B4009 East	M69 North	19	20	1	5%	N	0.23	× -	1			
	B4669 West	M69 North	12	12	0	0%	N	0.00	<	1			
	B4005 West	B4669 East	6	6	0	0%	N	0.00	~	 Image: A second s			
M69	M69 Mainline	Northbound	471	471	0	0%	N	0.00	 Image: A second s	1			
10109	wos wannine	Southbound	506	507	1	0%	N	0.04	 Image: A second s	1			

PM Peak (16:30-17:30) Summary - ALL	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

TIMEINT 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400 1800-5400

		Junctiony	wovement	venicie riow Difference			GEH CI	eι	Flow criteria iviet					
	Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
0		M69 North	B4669 East	165	177	12	7%	Y	0.92	1	×			
D		10103 1001 111	B4669 West	316	351	35	11%	Y	1.92	1	×			
D	M69 J2	B4669 East	B4669 West	228	231	3	1%	Y	0.20	1	1			
0	10105 32	D4009 East	M69 North	22	22	0	0%	Y	0.00	1	×			
D		B4669 West	M69 North	157	158	1	1%	Y	0.08	1	~			
D		D4005 West	B4669 East	372	373	1	0%	Y	0.05	1	1			
0	M69	M69 Mainline	Northbound	2304	2313	9	0%	Y	0.19	1	×			
0	10103	Wos Walline	Southbound	2197	2147	-50	-2%	Y	1.07	1	×			

PM Peak (16:30-17:30) Summary - LIGHTS

Total number of counts considered	1
VISSIM model counts with GEH <3	1
% of VISSIM counts with GEH <3	100.005
VISSIM model counts with GEH <5	1
% of VISSIM counts with GEH <5	100.009
VISSIM model counts with GEH <10	1
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

		Junction/	Movement	Vehic	le Flow	Differe	nce	GEH Cr	iteria M	et	F	ow Crit	eria Met	
MEINT	Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
800-5400		M69 North	B4669 East	158	169	11	7%	Y	0.86	~	 Image: A second s			
800-5400		WIGS NOT TH	B4669 West	293	327	34	12%	Y	1.93	1	1			
800-5400	M69 J2	B4669 East	B4669 West	227	230	3	1%	Y	0.20	1	×			
800-5400	10103 12	B4009 East	M69 North	21	21	0	0%	Y	0.00	1	<			
300-5400		B4669 West	M69 North	157	158	1	1%	Y	0.08	1	<			
800-5400		B4009 West	B4669 East	369	370	1	0%	Y	0.05	1	 Image: A second s			
800-5400	M69	M69 Mainline	Northbound	2154	2161	7	0%	Y	0.15	1	*			
800-5400	14105	wios wainine	Southbound	2027	1977	-50	-2%	Y	1.12	1	 Image: A set of the set of the			

PM Peak (16:30-17:30) Summary - HEAV	IES
Total number of counts considered	1
VISSIM model counts with GEH <3	1
% of VISSIM counts with GEH <3	100.009
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.009
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

TIMEIN 1800-5 1800-5 1800-5 1800-5 1800-5 1800-5 1800-5 1800-5

		Junction/	Movement	Vehic	le Flow	Differe	ence	GEH Cr	iteria M	et	F	low Crit	eria Met	
EINT	Junction	Approach	Exit/movement	Observed	Modelled	Actual	%		GEH	Pass	FLOW	<700	700 – 2700	>2700
0-5400		M69 North	B4669 East	7	9	2	29%	Y	0.71	1	✓			
0-5400		MB9 North	B4669 West	23	24	1	4%	Y	0.21	1	1			
0-5400	M69 J2	B4669 East	B4669 West	1	1	0	0%	Y	0.00	1	1			
0-5400	10109 12	D4009 East	M69 North	1	1	0	0%	Y	0.00	1	1			
0-5400		B4669 West	M69 North	0	0	0	-	Y	0.00	1	1			
0-5400		B4869 West	B4669 East	3	3	0	0%	Y	0.00	1	1			
0-5400	M69	M69 Mainline	Northbound	150	152	2	1%	Y	0.16	1	*			
0-5400	14105	NOS Mannie	Southbound	170	170	0	0%	v	0.00	1	1			

PM Peak (17:30-18:30) Summary - ALL	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

TIMEINT 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000

	Junction/ Movement			Vehicle Flow		ence	GEH C	riteria M	et	Flow Criteria Met				
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700	
	M69 North	B4669 East	181	188	7	4%	N	0.52	1	1				
	10103 1001 111	B4669 West	340	355	15	4%	N	0.80	1	1				
M69 J2	B4669 East	B4669 West	179	180	1	1%	N	0.07	*	1				
14105 32	D4005 Last	M69 North	22	21	-1	-5%	N	0.22	1	1				
	B4669 West	M69 North	142	147	5	4%	N	0.42	1	1				
	D4005 West	B4669 East	308	306	-2	-1%	N	0.11	1	1				
M69	M69 Mainline	Northbound	2164	2168	4	0%	N	0.09	1	1				
10103	W65 Walline	Southbound	2240	2231	-9	0%	N	0.19	4	×				

PM Peak (17:30-18:30) Summary - LIGHTS

Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

TIMEI 5400-5400-5400-5400-5400-5400-5400-5400-

		Junction/	Movement	Vehic	le Flow	Differ	ence	GEH C	iteria M	et		Flow Cr	iteria Met	
MEINT	Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
00-9000		M69 North	B4669 East	175	182	7	4%	N	0.52	1	1			
00-9000		WIGS NOT LT	B4669 West	315	330	15	5%	N	0.84	1	1			
00-9000	M69 J2	B4669 East	B4669 West	177	178	1	1%	N	0.08	1	1			
00-9000	10105 12	D4009 East	M69 North	22	21	-1	-5%	N	0.22	1	×			
00-9000		B4669 West	M69 North	140	145	5	4%	N	0.42	1	1			
00-9000		D4005 West	B4669 East	308	306	-2	-1%	N	0.11	1	1			
00-9000	M69	M69 Mainline	Northbound	2026	2031	5	0%	N	0.11	1	1			
00-9000	14105	WOS Walline	Southbound	2045	2035	-10	0%	N	0.22	1	 Image: A second s			

PM Peak (17:30-18:30) Summary - HEAV	IES
Total number of counts considered	
VISSIM model counts with GEH <3	
% of VISSIM counts with GEH <3	100.00
VISSIM model counts with GEH <5	
% of VISSIM counts with GEH <5	100.00
VISSIM model counts with GEH <10	
% of VISSIM counts with GEH <10	100.00
VISSIM model counts meeting WebTAG Unit 3.1 criteria	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00

TIMEINT 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000 5400-9000

		Junction	/ Movement	Vehic	le Flow	Differ	ence	GEH C	riteria M	et		Flow Cr	iteria Met	
т	Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
000		M69 North	B4669 East	6	6	0	0%	Y	0.00	1	1			
000		MIB9 NOT IN	B4669 West	25	25	0	0%	Y	0.00	1	1			
000	M69 J2	B4669 East	B4669 West	2	2	0	0%	Y	0.00	1	1			
000	10109 12	B4669 East	M69 North	0	0	0	-	Y	0.00	1	1			
000		B4669 West	M69 North	2	2	0	0%	Y	0.00	1	1			
000		B4669 West	B4669 East	0	0	0	-	Y	0.00	1	1			
000	M69	M69 Mainline	Northbound	138	137	-1	-1%	Y	0.09	1	1			
000	IVID9	Mi69 Mainline	Southbound	195	196	1	1%	v	0.07	1	1			

PM Peak (17:30-18:30) Summary - ALI	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Junction/ Movement Vehicle Flow		Difference		GEH Criteria Me		let	Flow Criteri		iteria Met			
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
	M69 North	B4669 East	346	365	19	5%	N	1.01	1	1			
	WIGS NOT LT	B4669 West	656	706	50	8%	N	1.92	1	1			
M69 J2	B4669 East	B4669 West	407	411	4	1%	N	0.20	1	1			
1010932	D4009 East	M69 North	44	43	-1	-2%	N	0.15	1	1			
	B4669 West	M69 North	299	305	6	2%	N	0.35	1	1			
	D4005 West	B4669 East	680	679	-1	0%	N	0.04	1	1			
M69	M69 Mainline	Northbound	4468	4481	13	0%	N	0.19	1	1			
14103	widd widininne	Southbound	4437	4378	-59	-1%	N	0.89	1	1			

PM Peak (17:30-18:30) Summary - LIGHTS	
Total number of counts considered	5
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.009
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.009
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.009

	Junction/	Movement	Vehic	le Flow	Differ	ence	GEH C	riteria M	et		Flow Cr	iteria Met	
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass		<700	700 – 2700	>2700
	M69 North	B4669 East	333	351	18	5%	N	0.97	 Image: A second s	1			
	10103 1101 111	B4669 West	608	657	49	8%	N	1.95	 Image: A second s	1			
M69 J2	B4669 East	B4669 West	404	408	4	1%	N	0.20	 Image: A second s	1			
1005 12	B4009 East	M69 North	43	42	-1	-2%	N	0.15	1	1			
	B4669 West	M69 North	297	303	6	2%	N	0.35	~	1			
	D4003 West	B4669 East	677	676	-1	0%	N	0.04	1	1			
M69	M69 Mainline	Northbound	4180	4192	12	0%	N	0.19	1	1			
19105	wide wathine	Southbound	4072	4012	-60	-1%	N	0.94	1	1			

PM Peak (17:30-18:30) Summary - HEAVIES	
Total number of counts considered	8
VISSIM model counts with GEH <3	8
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	8
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	8
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	8
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Junction/	Movement	Vehic	le Flow	Differ	ence	GEH C	riteria M	et		Flow Cr	iteria Met	
Junction	Approach	Exit/movement	Observed	Modelled	Actual	%		GEH	Pass	FLOW	<700	700 – 2700	>2700
	M69 North	B4669 East	13	15	2	15%	Ŷ	0.53	× .	1			
	IVIB9 NOT LT	B4669 West	48	49	1	2%	Y	0.14	1	1			
M69 J2	B4669 East	B4669 West	3	3	0	0%	Y	0.00	1	1			
10103 32	D4005 East	M69 North	1	1	0	0%	Y	0.00	1	1			
	B4669 West	M69 North	2	2	0	0%	Y	0.00	<	1			
	B4665 West	B4669 East	3	3	0	0%	Y	0.00	1	1			
M69	M69 Mainline	Northbound	288	289	1	0%	Y	0.06	1	1			
14105	WOJ Walthine	Southbound	365	366	1	0%	Y	0.05	1	1			

Hinckley National Rail Freight Interchange

APPENDIX 4: Queue Comparisons

PM Peak (16:30-17:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	1
% of VISSIM counts with GEH <3	50.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Junction/	' Movement	Vehic	le Flow	Differ	fference	GEI	GEH Criteria Met	let		Flow Criteria	eria Met	
	Link	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
00	M69 J2 Off-Slip	Southbound	601	529	-72	-12%	Y	3.03	×	1			
8	M69 J2 On-Slip	Northbound	182	180	-2	-1%	٢	0.15	*	1			

TIMEINT 1800-5400 1800-5400

PM Peak (17:30-18:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

	Junction	n/ Movement	Vehicle	e Flow	Differenc	ence	GE	H Criteria N	let	l	Flow Crit	eria Met	l
	Link	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
000	M69 J2 Off-Slip	Southbound	610	542	-68	-11%	٢	2.83	1	~			
000	M69 J2 On-Slip N	Northbound	175	167	8-	-5%	٢	0.61	1	>			

TIMEINT 5400-9000 5400-9000

PM Peak (16:30-18:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	1
% of VISSIM counts with GEH <3	50.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Junction/ I	n/ Movement	Vehicle	e Flow	Differ	Difference	GEI	GEH Criteria Met	et		Flow Crit	v Criteria Met	
Link	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
M69 J2 Off-Slip	Southbound	1211	1071	-140	-12%	Y	4.14	×	1			
M69 J2 On-Slip	Northbound	357	347	-10	-3%	Y	0.53	×	1			

change

APPENDIX 5: Flow Validation

AM Peak (07:30-08:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

		Junction/	in/ Movement	Vehic	e Flow	Differ	lifference	GEI	GEH Criteria Met	let		Flow Crit	Criteria Met	l
INT	Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
-5400	0300	M69 J2 Off-Slip	Southbound	316	271	-45	-14%	٨	2.63	1	1			
-5400	COINI	M69 J2 On-Slip	Northbound	732	730	-2	%0	٨	0.07	1	>			

TIMEINT 1800-5400 1800-5400

AM Peak (08:30-09:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100.00%
	7
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

		Junction,	n/ Movement	Vehicle	e Flow	Differ	fference	GE	H Criteria M	let		Flow Crit	eria Met	
TN	Junction	Approach	Exit/movement	Observed	Modelled	Actual	%	Critical	GEH	Pass	FLOW	<700	700 – 2700	>2700
0006	0700	M69 J2 Off-Slip	Southbound	281	247	-34	-12%	Y	2.09	1	1			
0006	COINI	M69 J2 On-Slip	Northbound	412	408	-4	-1%	Y	0.20	1	1			

TIMEINT 5400-9000 5400-9000

AM Peak (07:30-09:30) Summary - ALL	
Total number of counts considered	2
VISSIM model counts with GEH <3	-
% of VISSIM counts with GEH <3	50.00%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100.00%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100.00%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%

Vehicle Flow Difference GEH 0 int Observed Modelled Actual % Critical 597 518 -79 -13% Y	Flow Criteri	ia Met 700 – 2700 2700
Int Observed Modelled Actual % Critical GEH 597 518 -79 -13% Y 3.35	FLOW <700	
597 518 -79 -13% Y 3.35		-100 J
M69.12 On-Slip Northbound 1144 1138 -6 -1% Y 0.18 🖌	×	

APPENDIX 6: Journey Time Validation

06:30 - 03:0 Modellied Av., Actual Diff. S. Diff. Muthin 1 mil Validates 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	119 Modelled Avg. 80 23 103	Modelled 0.530-0530 Arg. Valdation Arg. Actual Dift. [% Dift. 22 22 23 23 76 9% 76 9%	Modelled Validation Ava. Actual Drift, is, Drift, Within 1 mid Validates Ava. Actual Drift, is, Drift, Within 1 mid Validates 1 1 21 0 7 7 0 358 × × 12 1 0 258 × × × 12 2	05:30 Anotalied Valuation Avg. Avc. Arctual Diff. Mathin 16% M	08:30 - 05:30 Modelled Validation Aros Actual Diri % Diri Main Aros Actual Diri % Diri Main Main Aros Actual Diri % Diri Main Main Aros Aros Validates Validates 27 28 0 0 Validates 23 23 0 -1% X Validates 61 53 0 0% X X X	08:00-1630 Modelled Vultation Avg. Jax. Actual Drif. Muth.n Tsk. With.n Tml Validates 67 68 -2 -3% × * * 12 12 -2 -16% × * * * 12 12 2 -3% × * * * 12 12 12 -3% × *
Validates Avg. Mm. Validates Avg. 27 28 27 28 26 77 111 Validates Avg. Avg. 28 28 28 120 111	Min.	Validates Avg. Min. 20 22 23 23 23 23 23 23 23 24 24 24 24 26 27 26 26 26 26	Validates Avg. 21 21 7 1 7 1 6 30 73 30	Validates Avg. 21 4 21 4 21 5 21	Validates Avp. Validates Avp. Image: Comparison of the state of the sta	Velidates Avg. Min. Velidates Avg. 69 V 14 14 12 V 23 23 23 14
08:30-0830 Actual [5, Diff. Within 15%, Wathan 1mm. <u>2 3%</u> / / / / / / / / / / / / / / / / / / /	-7% - 08:20 Valuation 101:1 Writin 15% 11 16% 13 13%	05:20-103-00 Validation Actual (% Diff. Within 1 min. 2 % / / / 6 7% / /	Validation 1 (S. Ditt. Vorhin 15%, Wohin 1 mit. 2 25% X V V 0 25% X V V 2 25% X V 2 25% X V 1 25% X V 2 25% X V 2 25% V	08:30-0330 Actual (s. Diff. Workha 1 ss. Workha 1 mma. 0 25	02:30 - 03:30 Validation 0 - 0% Vatinin 15% [Within 1 mill. 0 - 15% X	08:30-6330 Validation 1 (% 0tt. Within 15% Mathin 1 min. 2 - 17% × 1 2 - 17% × 1 0 - 2% × 1 0 - 0% / 1
Mondelled Mondelled 27 Avay. Max. Actual 27 Avay. Max. Actual 28 28 28 26 61 53 25 26 114 117 119 Actual Amm. Actual Actual Actual 66 66 67 Actual 23 25 25 26 23 25 26 27 23 25 26 27 23 25 25 26 23 25 25 26 23 25 25 26	118 119 120 Min. Avag. Artur 22 22 22 22 103 103	Modelled Modelled Min. Axy. Max. Actual 20 22 22 22 71 76 76 76 71 76 77 78 91 97 97 98	Modelled modelled modelled Am. Aug. Max. Acual (20 21 21 21 1 1 1 1 0 1 7 7 7 7 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 3 3 25 25 25 3 3 76 65 65 66 60 -10	Modelled Actual Mm. Arap. Actual Mm. Z <td< td=""><td>Mm. Modelled 2 Ann. Actual 2 25 25 26 3 23 23 23 33 49 49 40 50 50</td><td>08 Modelled</td></td<>	Mm. Modelled 2 Ann. Actual 2 25 25 26 3 23 23 23 33 49 49 40 50 50	08 Modelled
Validation Within 15%, Within 1 min. Validates Avg.	Validation Within 15% (Withih 1 min., Velidares, Av	Validation Rhin 15% Within 1 min. Validates Arg.	Validation Within 15%, Within 1 min. Validates Avi ×	validation Wethin 15% [Within 1 min.] Walidates Avv * * * * * * * *	Valitation Within 15% Within 1 min. Validates Avv x 7 7 7	Validation Within 15%, Within 1 min. Validates Av
07:30 - (6:30 07:30 - (6:30) Ans. Acrual Dirf. S Dirf. Asp. 22 23 23 Asp. 21 -10 -15 Asp. Actual Dirf. N Cols. 0':30 Actual Dirf. Actual Dirf. M Dir Actual Dirf. -0 -35 Actual Dirf. -0 -36	120 121 -7] -58. 07.20-008-20 07.20-008-20 07.20-008-20 08.20 Avan Antual Diff. Antual Diff. Antual Diff. Antual Diff. Avan 80 80 11 166 266 146 166 223 223 23 143 146 166 146 166 166 168-10	d Max. Actual 77 99		07:20 - 08:20 Modelled Ave. [Mos. Actual Diff. [5 Diff. [N] [2 0:2] 21 21 21 24 [2 0:2] 24 [2 0:2] 25 24 [2 0:2] 24 [2 0:	07:30-08:30 Modelled 70, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	07.30–08.30 Modelled Avg. Max. Actual Diff. N. Diff. Avg. Max. Actual Diff. N. Diff. N. Diff. VI 2 -15 -158 -358 -358 1 1 2 -158 -1 -358 12 13 -4 -358
Observed Mm. Dist. Avy. Mm. 830m 27 2 470m 27 2 126m 73 2 0bst. 73 6 128m 73 6 0bst. 73 6 128m 73 6 0bst. 73 6 454m 71 71 284m 71 71	District 1 2072m 127 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10	Observed Mink Modelle To Dist. Avg. Mink Avg. Miss SB Lychgate Ln 2197m 29 72 72 M69 SB Lychgate Ln 2197m 89 77 73 84	To Observed Avg. Min. NBOnsip 472m 21 21 NBOnsip 472m 21 21 111m 6 7 21 B4699 EB Sapcote Rd - 3 234m 71 65	Observed Min. To Dist. Avg. Min. 1 Avg. 21 3 5 </td <td>Observed Observed Io Distruct Amin Supporter Rd 470m 28 445m 23 4</td> <td>Observed Min. 0.0 014. Min. 24B 0121 11 2128 11 14 2106 1 1 2108 2 105 2108 2 10 2108 2 10 2108 2 10 25 15 1 25 25 25 25 25 25 26 25 25 26 25 25</td>	Observed Observed Io Distruct Amin Supporter Rd 470m 28 445m 23 4	Observed Min. 0.0 014. Min. 24B 0121 11 2128 11 14 2106 1 1 2108 2 105 2108 2 10 2108 2 10 2108 2 10 25 15 1 25 25 25 25 25 25 26 25 25 26 25 25
ccription - - Garage Le Garage ccription	TOTAL B4659 WB SI-Stanton Ln B4669 EB Sa Section Description To Section From Description 15 Me9 Only Me9 Only 16 Me9 Only Me9 Only 171 Me9 NB Lychgate Ln Me9 NB End	Section Description To 3retion From Description To 17 Me9 SB start Me9 SB Longing to Me9 SB Longing to 18 Me9 SB Cristip Me9 SB Longing to Me9 SB Longing to 17.1 Me9 SB Start 0 Me9 SB Longing to	Section Description 3 exitin From - 13 Nonsip - 10 RAB Circ BB Mid Origin to B4899 NBOmsip 10 RAB Circ BB Mid Origin to B4899 - 11 RAB Circ BB - 94699 EB 3 RAB Circ BB Spacete Rd - 94669 EB TOTAL NBOmsip - 84668 EB	Sector Description Sector From . 13 NBOrreip . 2 RAB ER MIS OFflip to 84699 . 5 RAB Endose EB . 1071L NBOrsip . .	Section Description Section From - </td <td>Description Description Section From - To Read Display Background - - To 11 Read Dir VIB - - - 12 Read Dir VIB - - - - 12 Read Dir VIB -</td>	Description Description Section From - To Read Display Background - - To 11 Read Dir VIB - - - 12 Read Dir VIB - - - - 12 Read Dir VIB -

Validation Within 15% [Within 1 mir Validates Validation Within 15% [Within 1 mir Validates Validation Within 15% [Within 1 mir Validates	Within 1 mir Validates	Within 1 min Validates	Within 1 mit Validates	Within 1 mir <mark>i</mark> Validates	Validation Within 15% [Within 1 min Validates	thin 1 mil Validates
Validation Within 16% Within 16% Validation Validation Within 16% Within 16%		Validation Within 15% W	Validation Within 15% W	Validation Within 15% W	Validation Within 15% W	Validation Within 15% W
16:30 - 18:30 Actual Drff. [K Diff. 22 22 23 23 24 4 4 4 4 55 25 25 25 21 20 25 21 27 25 21 27 27 27 27 27 27 27 27 27 27 27 27 27	16:30 - 18:30 Actual Diff. % Diff. 80 12 18% 22 3 15% 102 15.30	Actual Diff. % Diff. 22 3 14% 76 8 11% 98 11 12%	16:30 - 18:30 Actual Diff. % Diff. 22 3 14% 1 0 -20% 12 -2 -16% 25 1 3% 25 1 3% 67 1 1%	16:30 - 18:30 Actual Diff. % Diff. 22 3 14% 1 0 -20% 65 3 5% 88 6 7%	16:30 - 18:30 Actual Dift. % Diff. 25 Actual Dift. % Diff. 22 - 1 - 32% 48 -1 -1%	16:30 - 18:30 Actual Ditr. M Diff. Actual Ditr. M Diff. Actual Ditr. M Diff. 12 -2 22 -16% 21 -1 27 -1 27% -1 13 -1 14 -1
Modellied Avg. 28 Avg. 28 Avg. 28 64 64 Avg. 28 Avg. 29 Avg. 20 Avg. 2	Modelled Avg. Max. 79 80 22 22 101 102	Modelled Avg. Max. 22 22 75 75 87 97	Modelled Avg. Max. 21 Max. 1 1 1 1 25 25 26 66	Modelled Avg. Max. 21 22 1 1 64 65 86 87	Modelled Avg. Max. 24 25 1 1 22 22 47 47	Modelled Avg. Max. 65 05 11 15 12 15 11 12 12 22 10 108
	9. 88 19 87	9. Min. 19 87	9. Min. 19 14 24 66	g. Min. 19 62 82	9. 24 Min. 23 23 48	g. Min. 65 Min. 14 4 107 107
Vehidates Avg.	Validates Avg.	Validates Avg.	Validates Av	Validates Avg.	Validates Avg.	Validates Avy
Validation 15% Writhin 1 min. Validation Validation Validation	15% Within 1 min.	Validation Within 15% Within 1 min.	Validation 15% Within 1 min.	Validation 15% Within 1 min.	Validation 15% Within 1 min.	Validation 15% Within 1 min.
	17:30 - 18:30 Actual (* Drf. Writin 15% Actual (* Drf. Writin 15% 1 18% 5 15% 5 15% 7 18:30		17:30 - 18:30 al (* Diff. Within 14 al (* Diff. Within 14 al 15% × * 0 0% × * 1 5% × *	30 Within	30	17:30 - 18:30 Valid: 11 1 % Diff. Within 15% - 15% 15% 15% 15% 5% 5%
Max. Actur 9 25 1 25 1 25 1 18 Max. Actur 65 1 18 1 18	Max. 22 102	Max. Actu 22 76 98	Max. Actui 22 1 1 1 1 25 6 25 6 7	Max. Actua 22 65 87	Max. Actu 1 25 2 22 2 48	Max. Actua 6 65 Actua 3 8 8 3 108 8 108
Min. Modelled Min. Avg. 28 29 26 24 24 24 60 64 24 Min. 111 111 Min. Avg. 25 22 25 25 23 25 25 24 25 25	Min. Modelled Min. Avg. 67 22 20 19 22 22 87 101 102	Modelled Min. Avg. 19 22 22 68 75 76 87 97 97	Modelled Min. Avg. 19 21 21 1 1 1 1 7 7 7 1 13 11 11 11 24 25 25 26 66 66 66 66	Modelled Min. Avg. 19 21 21 11 1 1 10 64 64 80 86 81	Modelled Min. Avg. 24 24 24 1 1 21 21 23 22 22 23 23 22 23 22 23 48 47 47 47	Min. Addelled Min. Addelled Min. Ag. 65 64 65 13 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Validates Avg.	Validates Avg.	Validates Avg.	Avg.	Validates Avg.	Validates Avg.	didates Avg.
vithin 1 min.		uin.	on Witchin 1 min. Vs		iii	on Writhin 1 min. V
16:30 - 17:30 validation 11. [s. Diri. [Wathin 15.8] [Wathin 15.8] 2. 35.4 1. 35	16:30 - 17:30 Validation Actual Dirf 5 Dir Within 16% [Within 12 13% × · · · · · · · · · · · · · · · · · ·	Validation Actual Diff. % Diff. Within 15%, Within 1 3 14% // // // // //	IRR.0 - 17:20 Validation Validation 11:	16:30 - 17:30 Validation 11: \$ 011. Wothin 15\$. [Within 11: \$ 011. Wothin 15\$. [Within 11: \$ 011.	16:30 - 17:30 Validation 0 95/11 (Minin 15 0 95/12 (Minin 1 0 315/5 (Minin 1 -1 45/5 (Minin 1 -1 35/5 (Minin 1	16:30 - 17:30 Validation Val
Actual D Actual D	8 2 8	01 (0 1	Actual Diff. Distor P7:30 22 Actual Diff. 8 13% 1 0 -13% -13% 25 0 -3% -3% 55 0 2% 67 0	16:30 - 17:30 Actual Diff. % Diff. 22 13% 1 0 -18% 66 2 3% 88 4 5%	16:30 - 17:30 Actual Diff. % Diff. 25 0 0% 21:4 -31% 21% 22: -1 -4% 48 -1 -1%	16:30 - 17:30 c Actual Dif. Dif. Actual Dif. 0% 0% 12 -10% 13% 12 -11 4% 22 -11 4% 23 -11 4% 13 -1 4% 14 -1 4% 15 -1 -4% 109 0 0%
Modelled Min. Avg. Max. 29 20 20 20 44 25 25 26 64 25 26 118 And Avg. Max. Avg. 64 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 26 26 26 27 26 26 26 27 26 26 26 28 26 26 26 28 26 26 26 28 26 26 26 28 26 26 26	lax	Modelled Min. Avg. Max. 22 22 27 75 75 76 97 97 91	Modelled 22 Max 22 22 1 1 1 1 1 1 25 25 25 25 26 55	Modelled Min. Avg. Max 22 22 1 21 22 64 65 87 88 88 88	Modelled in. Avg. Max 24 25 1 1 22 22 47 47	Modelled Modelled Max 65 Max 11 12 8 8 1 1 22 22 22 22 22 22 108 108
Observed Avg. 530m 25 476m 25 1286m 25 2274m 117 0bserved Avg. 2294m 24 487m 24 487m 18	Dbserved Avg. 623m 19 813m 87	Observed Dist. Avg. A 603m 19 2197m 68 2801m 87	Observed st. Avg. h 472m 19 16m 19 218m 14 294m 24 294m 24	Observed 472m 16m 11 16m 1268m 63 1757m 83	Observed ist. Avg. M 476m 25 15m 23 430m 23 921m 48	Observed st. Avg. A 1291m 66 218m 14 105m 5 15m 23 15m 23 2059m 108
To B4669 V(B Sappote Rd- B4669 V(B Sappote Rd- B4669 V(B Sappote Rd- B4669 EB St-Sappote Rd- Distribution Ld 10 B4669 EB Sappote Rd- B4669 EB Sappote Rd- B4669 EB Sappote Rd-	To Dist. Me9 Onep 2 Me9 NB End 2 Me9 NB End 2	To Dis M65 SB Offsip M69 SB Lychgate Ln M69 SB Lychgate Ln	NBOnsip Ito B4690 EB Sapcote Rd - 1 B4669 EB Sapcote Rd - 1	To Dist. NBOrsip 8469 EB St-Stantion Li	To Di B4699 WB Sapoote Rd - SB Offslip	Tro Dist B4669 EB RAB SB Orisip SB Orisip
.G Garage icription		Description -	Description Kalp to 84699 te Rd	Description - Kaip to B4599	Description ad-Smithy Ln B	Description nLn 10 EB 10 EB 18
Section Friom Description Section Friom Description 1 Bedds VIG Spoole Ret-Mondaler G 2 Bedds VIG Spoole Ret-Mondaler G 2 Rual Bedds EB Rual Bedds EB Rual Bedds EB Rual Pedds EB Rual Pedds EB Rual Pedds EB Rual Pedds EB Suppore Ret Bedds MIG St-Stanton Ln TOTAL Bedds WIG St-Stanton Ln	Section Section 15 Meio NB Lychgate Ln 16 Meio Oralp TOTAL Meio NB Lychgate Ln	Section From 17 M69 SB Start 101AL M69 SB Start 101AL M69 SB Start	Section From De 3 Red for the provide the section 9 NBOmBp 9 NBOmBp 9 NBOmBp 13 NBOmBp 9 RAB Circs SB MBO Ombip to B46989 10 RAB Circs SB 11 RAB Circ VB 11 RAB Circ VB 3 RAB - 4859 B Specide Rd 3 NBOmBp 10 NBOmBp	Section From Long Netricon From From Section 13 Netricon Press 13 Netricon Press Meg Orisip to B4690 5 R.A.B. Alle B4696 EB TOTAL NBOrnsip	Section From Desor Section From From Control of Contro	Section Bedego WE Schmen Ln 11 RAB Circ WB addepo E8 7 RAB Circ WB addepo E8 12 RAB Circ WB addepo E8 13 RAB Circ MB addepo E8 14 Storkip TOTAL B4659 WE Schmen Ln

TRANSPORT & INFRASTRUCTURE PLANNING

Tritax Symmetry Ltd Hinckley National Rail Freight Interchange M69 Junction 1 & 2 VISSIM Audit Response

TRANSPORT & INFRASTRUCTURE PLANNING

Tritax Symmetry Ltd

Hinckley National Rail Freight Interchange

M69 Junction 1 & 2 VISSIM

Audit Response

Birmingham Livery Place, 35 Livery Street, Colmore Business District Birmingham, B3 2PB T: 0121 233 3322

> Leeds Whitehall Waterfront, 2 Riverside Way Leeds, LS1 4EH T: 0113 233 8000

> > London 11 Borough High Street London, SE1 9SE T: 0207 407 3879

Manchester 11 Portland Street Manchester, M1 3HU T: 0161 233 4260

Market Harborough Harborough Innovation Centre, Wellington Way, Airfield Business Park, Leicester Road Market Harborough, Leicestershire, LE16 7WB T: 01858 455020

> Nottingham 5th Floor, Waterfront House, Station Street Nottingham, NG2 3DQ T: 0115 924 1100

August 2021

DOCUMENT ISSUE RECORD

Document Number:	HNRFI-BWB-GEN-XX-RP-TR-0025-S4-P01_VISSIM Modelling Response
	NTT2814

Revision	Date of Issue	Status	Author:	Checked:	Approved:
1	03/08/21	lssue 1	Chris Davis	Luke Best	Vibeeshan Devaharan

Notice

This document has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this document by any third party. No part of this document shall be copied or reproduced in any form without the prior written permission of BWB.

CONTENTS

1.	INTRODUCTION
	Instruction5
	Site Location
	Report Purpose
2.	REPORT STRUCTURE
	The report is structured as follows:
3.	Model Review – Highways England8
4.	Model Review - Leicestershire County Council
	Dynamic Assignment Clarification
	Re-convergence requirement
	Multiple Routes
	Convergence Criteria
	Calibration & Validation of Model
	Flow Calibration
	Vehicle Journey Time Validation
5.	Model Review - Warwickshire County Council
6.	Model Review - Observed Travel Time data interrogation
7.	SUMMARY AND CONCLUSIONS
	SUMMARY
	CONCLUSION

FIGURES

Figure 1: Site Location Figure 2: M69 NB Offlsip to A5 NB or Circulatory Figure 3: M69 NB Offslip Connectorsw Figure 4: Connector Structure Figure 5: Dynamic Assignment Edges Figure 6: AM Model Convergence

Figure 7: PM Model Convergence

Figure 8: Journey Time Routes - Primary

Figure 9: Journey Time Route - Secondary Figure 10: Journey Time Segment

TABLES

Table 1: Highways England Comments & BWB Response Table 2: HE Spreadsheet Audit Comments Table 3: LCC Audit Comments Table 4: Further Audit Response Table 5: AM Flow Calibration – 0730 – 0830 hrs

AM Peak (07:30-08:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 6: AM Flow Calibration – 0830 – 0930 hrs

AM Peak (08:30-09:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 7: AM Flow Calibration – 0730-0930 hrs

AM Peak (08:30-09:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria		

Table 8: PM Flow Calibration - 1630-1730 hrs

PM Peak (16:30-17:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 9: PM Flow Calibration -1730-1830 hrs

PM Peak (17:30-18:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 10: PM Flow Calibration – 1630-1830 hrs

PM Peak (16:30-18:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 11: AM Journey Time Validation

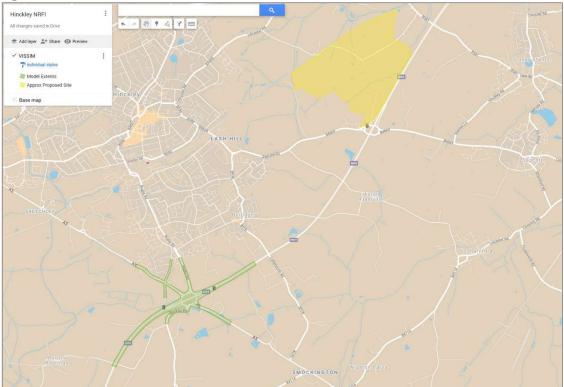
Table 12: PM Journey Time Validation

Table 13: LCC M69 Junction 1 Comments

Table 14: LCC M69 Junction 2 Comments

Table 15: WCC Modelling Comments

1. INTRODUCTION


Instruction

1.1 BWB Consulting has been commissioned as part a wider project scope by Tritax Symmetry Ltd to develop a series of highway models capable assessing any highway impacts resultant of the proposed Hinckley National Rail Freight Interchange (HNRFI) development. It is understood that the site will be developed serving a maximum of 850,000sqm of B8 warehousing/distribution uses, with access served directly onto M69 Junction 2.

The model purpose is to provide a robust platform on which the proposed development can be tested, allowing any impacts on the junction and surrounding highway network to be assessed.

Site Location

1.2 **Figure 1** below displays the indicative location of the proposed development, as well as the relative position of the highway model extents.

Figure 1: Site Location

Report Purpose

1.3 Due to the scale of the proposed development and the likely vehicular trips that it will generate, a comprehensive micro-simulation model of both the M69 Junction 1 and 2 gyratory has been developed using PTV Group's VISSIM software.

- 1.4 The following Local Model Validation Report (LMVR) summarises the methodology used to build and test the model, as well as the results obtained to determine the suitability of the model for use in proposed option testing.
- 1.5 Following the completion of the validation process, the model will be submitted for approval to Highways England (HE) and Leicestershire County Council (LCC) as the Local Highway Authority (LHA), for review, comment, and agreement. Once traffic outputs are available from the strategic LLITM (Leicester and Leicestershire Integrated Transport Model), the development proposals will be assessed.
- 1.6 This document provides commentary from Highways England, Leicestershire County Council & Warwickshire County Council after their review and comment. The comments and BWB's response are shown on the following pages.

2. **REPORT STRUCTURE**

The report is structured as follows:

- Section 3: Model review commentary from Highways England and BWB modelling response.
- Section 4: Model review commentary from Leicestershire County Council and BWB modelling response.
- Section 5: Model review commentary from Warwickshire County Council and BWB modelling response.
- Section 6: Observed Travel Time data interrogation

3. Model Review – Highways England

3.1 HE provided comments with regards to M69 Junction 1 modelling on 18/02/2021. BWB response has been provided in **Table 1** and **2**.

Modelled Network				
Highways England Comment	BWB Modelling Response			
Overlapping was observed on numerous occasions, where vehicles (both light and heavy) do not always give way from the B4109 south;	Priority Rules 31 & 32 amended to reduce this occurrence			
Weaving issues have been identified at the M69 Southbound on-slip where most vehicles attempt a late merging manoeuvre. This may be caused by the coding of the circulatory (traffic travelling to the M69 southbound on slip comes around the roundabout in two lanes before merging) which differs from how the junction is marked on satellite imagery. This results in traffic waiting on the circulatory and then blocking traffic from exiting the B4109 south.	Connector 10045 Lane Change distance to be investigated. The lane merging is at the optimum location within the model - increasing the lane change distance causes issues to the circulating traffic whereas decreasing the distance makes more later merging and vehicle occurrences.			
south use the wrong lane (i.e. the offside	We will investigate this - there may be an opportunity to stop lane change on a number of the links namely: 15 , 10109 , 97 however we would want these to be as minimal as possible as we do not necessarily want to keep this arrangement in the future. Vehicles will inherently change lanes within the circulatory of a roundabout - by banning lane change we are forcing vehicles to stay in lanes where in reality they are allowed.			
Vehicles travelling from the M69 northbound to the A5 northbound use both nearside lanes. Road markings on satellite imagery show that the nearside lane only should be used for this movement.	This is a valid manoeuvre - vehicles can make both movements from these lanes. See Figure 2 overleaf which outlines all available movements in the model but also when referring to the lane markings on site.			
The two nearside lanes are marked for the B4109 but in the model it is only possible to make this movement in the middle lane.	This manoeuvre is open to any lane - there are look back 'Lane Change Distance' parameters which dictate when vehicles start to change lanes to be at the correct location within the model. See Figure 3 overleaf which provides details on which links and connectors each movement would use within the model.			

Table 1: Highways England Comments & BWB Response

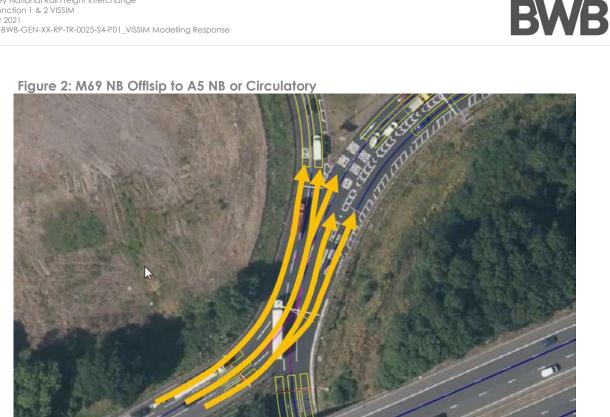


Figure 3: M69 NB Offslip Connectorsw

Table 2	: HE	Spreadsheet	Audit	Comments
---------	------	--------------------	-------	----------

Spreadsheet Audit Commentary			
Highways England Comment	BWB Modelling Response		
In the 'SurveyChecks_JT_AM' the observed values are looking up the wrong time periods. For example, for the time period 0730-0745 the observed value in cell F7 reads 113 seconds. However, in the 'M69_TT_J1.xlsx' spreadsheet 113 seconds is for 0700-0715. It appears that the observed journey times in the CalVal spreadsheet are reading the data for 30 minutes before. This			

also occurs in the PM. This should be corrected, and validation of the models checked against the updated values and an updated LMVR provided.	
The hourly journey times for which the final validation is undertaken is calculated by averaging the four average 15-minute periods. Averaging an average can result in skewed results for the whole hour, therefore it is recommended that the 15-minute journey times are weighted by the 15- minute flow to calculate an hourly average.	Amended calculations to weight the travel times as suggested. All TT still validated as previous. Option available to turn Weighted Average On / Off.

3.2 It should be noted that no saturation flow data was made available. Model Specification. At each stopline within the model, there are Reduced Speed Areas coded to represent 'standard' traffic behaviour for vehicles crossing signal stop lines and thus standard saturation flows,

4. Model Review - Leicestershire County Council

Table 3: LCC Audit Comments

Modelled Network Junction 1			
Leicestershire County Council Comment	BWB Modelling Response		
Route Convergence: it is unusual for a Dynamic Assignment model to not be run to convergence; admittedly there is limited route choice, but further clarity should be provided around the decision not to converge the model (noted that in LMVR section 3.14 there is a short section on this matter) and what impact would converging the model have on the validation?	See Dynamic Assignment Clarification section		

Dynamic Assignment Clarification

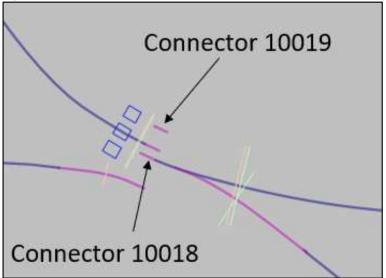
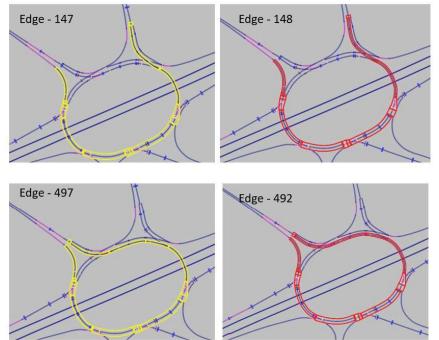

4.1 Further to this question, and after review of the model HE commented that: Leicestershire County Council provided a model response on 19/02/21. See **Table 4** below for details:

Table 4: Further Audit Response

HE Comment Although it is not part of Highways England's previous comments, we note that LCC raised a query over model convergence not having been assessed. We would like to note that the model does have route choice as it stands. These route choices are inherently created as a result of connectors 10018 and 10019, which are open for all paths. Hence, creating multiple edges (for example, edges numbers 147, 148, 492 and 497) for the same movement. We therefore advise you review the open edges passing through these connectors or provide a convergence assessment, if applicable.


- 4.2 BWB acknowledge that in our response, it was stated that there was not any route choice for the modelled extent. This statement was made when looking at the network as a whole there are no Origin / Destination pairs where there are two routes, and not looking at the specific network structure.
- 4.3 The statement made by LCC and HE are correct insomuch that there is route choice within the model as routes travelling around the gyratory could use either connector 10018 and 10019.

4.4 When a VISSIM model is built to use Dynamic Assignment, when the traffic is assigned, an abstract network is automatically created. This abstract graph refers to junctions as nodes and links between junctions as edges. In the previously submitted model, edges 147 and 148 are used for travel between Rugby Road SB to the A5 northbound and edges 492 and 497 from Rugby Road SB to Wolvey Road NB.

4.5 When the routing assignment is calculated, the network is simulated repetitively with the vehicles choosing their paths through the network based on the best path through the network. If there are multiple routes, vehicles are assigned to the routes – in the case of the M69 J1 model there should be no route choice available.

Re-convergence requirement

Multiple Routes

- 4.6 In order to stop the route choice within the model, one of the edges for each OD pair must be closed. Edges 148 and 492 are required to be closed. (see Figure 5). These edges use connector 10019 which is located on lane 3 of the gyratory and not the lanes that should be used for vehicles leaving the gyratory to the northbound A5 exit. With this edge open, vehicles would be in the incorrect lane to be able to safely leave the gyratory at the A5 northbound exit.
- **4.7** Whilst edges 148 and 192 have been closed, it should be noted that other routes are still able to use this connecter specifically vehicles entering the gyratory from the B4109 Hinkley Road and making the movement to any exit other than the M69 WB or the A5 NB exits.
- **4.8** Unfortunately, closing an edge after compiling a Dynamic Assignment model does not automatically move modelled vehicles from the closed edge onto alternative edges. A full re-convergence of the model is therefore required where all potential routes are analysed. In doing a full re-convergence exercise, all available edges are assessed for each path between OD pairs and the vehicles are assigned accordingly. However, as there is now no route choice between OD pairs (due to the closure of edges 148 and 492), there will be one route between each OD pair and technically convergence calculations would be unnecessary.
- **4.9** For completeness and to satisfy the auditor query, a convergence assessment has been carried out for both the AM and PM base model. As there is a potential change in the traffic movement around the gyratory, the model validation will also be checked however there is envisaged to be no change to the status of the model.

Convergence Criteria

- 4.10 The Transport for London Modelling Guidelines suggest that the following convergence criteria are fulfilled:
 - 95% of all path traffic volumes change by less than 5% for at least four consecutive iterations; and
 - 95% of travel times on all paths change by less than 20% for at least four consecutive iterations.
- 4.11 And the DMRB TAG criteria adds:
 - The percentage change in user costs or time spent within the network (V) should be less than 1% for four consecutive iterations.
- 4.12 Using the two criteria, BWB have analysed the convergence of the base models using Path Travel Times and Volumes for 30 iterations. The results are shown below.

4.13 As there is no route choice, the traffic volumes will have minimal difference between model iterations and the overall travel times between the iterations will also show minimal differences.

		Paths		Network Performance	
	Travel Tin	nes (0-20%)	Mal Difference		
Run Number	Check 1 - ShrConvPathTT	Check 2 - Paths List - Converged = Yes	Vol. Difference (0-5)	Total Travel Time (s)	Diff from prev
1	100%	100%	98%	1218858.5	
2	100%	100%	100%	1219514.5	0.1%
3	100%	100%	100%	1224328.2	0.4%
4	100%	100%	100%	1216447.4	-0.6%
5	98%	100%	100%	1220028.3	0.3%
6	100%	100%	100%	1218548.7	-0.1%
7	100%	100%	100%	1218877.6	0.0%
8	100%	100%	100%	1219728.6	0.1%
9	100%	100%	100%	1218737.4	-0.1%
10	100%	100%	100%	1219978	0.1%
11	100%	100%	100%	1218542.1	-0.1%
12	100%	100%	100%	1222335.8	0.3%
13	100%	100%	100%	1222748.8	0.0%
14	100%	100%	100%	1220483.4	-0.2%
15	100%	100%	100%	1223055.6	0.2%
16	100%	100%	100%	1217468.6	-0.5%
17	100%	100%	100%	1217206.3	0.0%
18	100%	100%	100%	1216967.3	0.0%
19	100%	100%	100%	1217347.3	0.0%

Figure 6: AM Model Convergence

Most suitable run - BEW and WEG used for results reporting

Figure 7: PM Model Convergence

Paths			x	Network Performance	
Run Number	Travel Times (0-20%)				D!## 6
	Check 1 - ShrConvPathTT	Check 2 - Paths List - Converged = Yes	Vol. Difference (0-5)	Total Travel Time (s)	Diff from prev
1	100%	100%	100%	1334536	
2	100%	100%	98%	1347807.1	1.0%
3	100%	100%	98%	1338237.6	-0.7%
4	100%	100%	98%	1344255.1	0.4%
5	100%	100%	98%	1342350.1	-0.1%
6	100%	100%	98%	1343548	0.1%
7	100%	100%	98%	1341142	-0.2%
8	100%	100%	98%	1340436.6	-0.1%
9	100%	100%	98%	1343589	0.2%
10	100%	100%	98%	1361550.3	1.3%
11	100%	100%	98%	1341739.9	-1.5%
12	100%	100%	98%	1338824.6	-0.2%
13	100%	100%	98%	1335770	-0.2%
14	100%	100%	98%	1339773.2	0.3%
15	100%	100%	98%	1344630.5	0.4%
16	100%	100%	98%	1342177	-0.2%
17	100%	100%	98%	1335539.2	-0.5%
18	100%	100%	98%	1354537.3	1.4%
19	100%	100%	98%	1341573.3	-1.0%
20	100%	100%	98%	1343467.1	0.1%
21	100%	100%	98%	1325857.1	-1.3%
22	100%	100%	98%	1354584.3	2.2%
23	100%	100%	98%	1349711.9	-0.4%
24	100%	100%	98%	1344865.2	-0.4%
25	100%	100%	98%	1337004.1	-0.6%
26	100%	100%	98%	1344690.3	0.6%
27	100%	100%	98%	1339054.9	-0.4%
28	100%	100%	98%	1346476.1	0.6%
29	100%	100%	98%	1344987.8	-0.1%
30	100%	100%	98%	1343135	-0.1%

Most suitable run - BEW and WEG used for results reporting

Calibration & Validation of Model

4.14 The following tables provide a summary of the status of the model after the reconvergence exercise.

Flow Calibration

Table 5: AM Flow Calibration – 0730 – 0830 hrs

AM Peak (07:30-08:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 6: AM Flow Calibration – 0830 – 0930 hrs

AM Peak (08:30-09:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 7: AM Flow Calibration – 0730-0930 hrs

AM Peak (08:30-09:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 8: PM Flow Calibration - 1630-1730 hrs

PM Peak (16:30-17:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 9: PM Flow Calibration -1730-1830 hrs

PM Peak (17:30-18:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Table 10: PM Flow Calibration - 1630-1830 hrs

PM Peak (16:30-18:30) Summary - ALL		
Total number of counts considered	42	
VISSIM model counts with GEH <3	42	
% of VISSIM counts with GEH <3	100.00%	
VISSIM model counts with GEH <5	42	
% of VISSIM counts with GEH <5	100.00%	
VISSIM model counts with GEH <10	42	
% of VISSIM counts with GEH <10	100.00%	
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42	
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100.00%	

Vehicle Journey Time Validation

- 4.15 As before, the journey time validation has been carried out using TomTom data.
- 4.16 A total of 12 journey time routes have been prepared for the purpose of model validation. (Four primary routes and eight secondary routes).

Figure 8: Journey Time Routes - Primary

Table 11: AM Journey Time Validation


Whole Routes	AM Peak		
Criteria	07:30-08:30	08:30-09:30	07:30-09:30
85% of measures within 15%	83%	92%	100%
85% of measures within 60 seconds	100%	100%	100%

Table 12: PM Journey Time Validation

Whole Routes	PM Peak		
Criteria	16:30-17:30	17:30-18:30	16:30-18:30
85% of measures within 15%	100%	92%	100%
85% of measures within 60 seconds	100%	100%	100%

- 4.17 In accordance with TAG Unit 3.1, which recommends that the difference between observed and modelled journey times should be within 15% (or 1 minute if higher) for at least 85% of the routes evaluations, it can be seen that all routes meet one of both criteria in the AM and PK peak models.
- 4.18 In the AM peak, the 0830-0930 hrs and 0730-0930 hors time periods both meet the TAG criteria with over 85% of the routes being within 15% and 60s. In the 0730-0830hrs time periods, there are two routes which fall outside of the 15% difference. (one having 16% difference) and 12/12 routes are within the 60s. Given how closed the non-validating route is to the 15% difference, the model is still considered representative of on-street conditions.
- 4.19 In the PM peak, all time periods are within 15& and 60s. Therefore, the PM model is considered representative of on-street conditions.
- 4.20 LCC provided further comments on 23/02/21, BWB modelling responses have been provided in **Table 13** and **14**.

Modelled Network Junction 1									
Leicestershire County Council Comment	BWB Modelling Response								
	Noted - added Reduced Speed Area No. 60 is on the A5 SB link								
A5 section between Wolvey Road and M69 Roundabout should be National Speed Limit (both directions)?	Added Desired Speed Decisions (DSD) 45,47, 50,51, 53, 54,55 A5 NBSB NSL & 40mph Wolvey Rd & B4109 NB @ 50mph and SB @ NSL								

Table 13: LCC M69 Junction 1 Comments

A5 section South east of M69 junction should be Noted - added National Speed Limit (both directions)?

Table 14: LCC M69 Junction 2 Comments

Modelled Net	work Junction 2
Leicestershire County Council Comment	BWB Modelling Response
The vehicle behaviour around Link 50 should be improved. Currently vehicles observed to slow down to around 25kph on the approach to this link which impacts on the circulatory flow of the roundabout.	It is acknowledged that there is hesitancy with some vehicles as they travel around the circulatory travelling through Link 50. The link structure in this section was updated in an attempt to better reflect the lane markings and layout on site. In VISSIM, the use of the 0.1m lane technique has been used to model the flare from Lane 2 on the circulatory to 3 further downstream (highlighted in yellow below).

- 4.21 There is an argument that in reality, the flare should be from Lane 2 to Lane 2, rather than Lane 2 to Lane 3. However, in VISSIM, there is a limitation that the 0.1m lane cannot be included in the middle of the link without needing separate connectors. This approach was considered, but it was felt that this would fix the lane use too much to specific lanes, where the existing layout shows more lane choice.
- 4.22 It should also be noted that the flow calibration on this approach meets TAG guidance and the journey times that include this section are all within TAG criteria, indicating that the operation is not significant enough to affect the comparisons with observed data.
- 4.23 Finally, with reference to the observations by Leicestershire County Council for the Junction 2 model we have further investigated this and have noticed that the observed TRADS data reports a different traffic flow on the slips when compared to the observed survey dataset of which it is more prevalent in the PM peak.
- 4.24 The observed MCC data for the J2 Onslip is 1002 vehs whereas the TRADS is 1211 vehs. The modelled is reporting as 1071 vehs.

	Junet	Vehicle Flow		Difference		GEH Criteria Met			Flow Criteria Met				
Junction	Approach	Exit/movement	Observe d	Modelled	Actual	u %.	Critical	GEH	Pass	FLOW	<700	700 - 2700	>2700
	MCO N J	B4669 East	346	365	19	5%	N	1.01	1	1			
	M69 North	B4669 West	656	706	50	8%	N	1.92	1	*			1
100		D400011	407		C 23 C		100	0.00	2 1 1	2 B	10 1	2 · · · · ·	0

Validation compared to MCC data:

Note – the slip flows in the MCC data are calculated using both the 364 and 706 values.

Validation compared to the TRADS dataset:

	Junction	Vehic	le Flow	Difference		GEH Criteria Met			ï	
	Link	Exit/movement	Observed	Modelled	Actual		Critical	GEH	Pass	FLOW
_	M69 J2 Off-Slip	Southbound	1211	1071	-140	-12%	Y	4.14	x	~

4.25 We included the analysis within the LMVR for completeness as the flows are within 12% of the observed TRADS and are within TAG guidance. However if we look at the MCC validation the difference is 5% and a GEH if 1.01 for the east movement and 8% difference and a GEH of 1.92 for the west so validated very well.

5. Model Review - Warwickshire County Council

5.1 Warwickshire County Concil provided modelling review comments on 23/02/21, BWB response has been provided in **Table 15** below..

Table 15: WCC Modelling Comments


Modelled Net	Modelled Network Junction 1										
Warwickshire County Council Comment	BWB Modelling Response										
LMVR for M69 jct 1 and would just like clarification as to why the for the journey time assessment the B4109 Hinckley Rd (from Wolvey) is only considered to/from A5 Southbound (towards Dodwells)?	Noted. The travel time data provided by Tom Tom is for individual link segments. When compiling a route, each of the link segments are combined to create a full route. There are some sections – predominantly on the gyratory – where multiple routes traverse the same link										
We appreciate that when the revisions for the comments that HE and LCC have made that the results will be updated, however it would assist us to understand what the 'sections' are	segments. So that each of the individual segments are included in the model validation, we have selected routes that cover all segments at least once.										
on the network and which 2 journey time route are outside of the acceptability criteria	We have expanded the text within the LMRV to read:										
	The data is provided in small link sections, so these were combined into more reasonable lengths from junction to junction in the network, which assisted the calibration of the model. For the purpose of providing journey time validation, multiple sections have been combined into longer journey routes, covering all major movements at key locations.										
	Within the gyratory, at least three full routes have been selected for each section.										
	Again, we have expanded the LMVR to detail any Travel Time segments that do not validate and provide the differences.										

6. Model Review - Observed Travel Time data interrogation

- 6.1 When looking at the travel time segments within the model, it was seen that some of the observed data on one section did not make sense.
- 6.2 The section of interest was found on A5 NB route and was segment number 10. This segment contains a number of individual Tom Tom sections namely id 492, 434, 93, 250, 270 and 560, as shown in the following image.

Figure 10: Journey Time Segment

6.3 The travel times shown from the TOM TOM dataset show that in the 0745-0800 period the travel time section took 192s to traverse where in the previous 3 15minutes periods the travel time was recorded as 76s, 73s and 67s respectively. Then for the remaining periods, the travel time drops to 94s and less. Clearly there was an incident or erroneous data capture.

	AM Journey Time (s)											
	2		x	×	x	x	x	x	x	x		
Section	0700-0715	0715-0730	0730-0745	0745-0800	0800-0815	0815-0830	0830-0845	0815-0900	0900-0915	0915-0930	0930-0915	0945-1000
10	76	73	67	192	94	87	54	58	55	53	60	52

6.4 The TomTOM data set contained the single day Wednesday 10th April 2019 data but also as an average for the month of May 2019. This dataset has been used to replace the erroneous data period for the whole segment for consistency. The travel time measurements now report the following:

	AM Journey Time (s)											
			x	×	x	x	x	x	x	x		
Section	0700-0715	0715-0730	0730-0745	0745-0800	0800-0815	0815-0830	0830-0845	0845-0900	0900-0915	0915-0930	0930-0945	0945-1000
10	81	74	80	69	88	69	58	69	63	56	60	52

6.5 So that both peaks are using the data dataset, the average monthly data has been used for the PM peak also.

7. SUMMARY AND CONCLUSIONS

SUMMARY

- 7.1 This LMVR Audit Response (and the associated revised LMVR) document(s) have been provided to show the development of the base model and further demonstrates that it is an acceptable representation of the highway network within the study area and is fit for the purpose of developing traffic forecasts to assess the impact of development proposal scheme on the M69 Junction 1 gyratory.
- 7.2 BWB have taken all comments onboard and where necessary updated the revised the model to reflect these changes.
- 7.3 The purpose of model calibration is to ensure that the model assignments are appropriate. The main emphasis of the calibration is to ensure that the model accurately reflects existing conditions during the modelling period with regard to:
 - Traffic patterns;
 - Key junctions; and
 - Traffic volumes and routing.
- 7.4 In regard to the traffic turning and flow counts at the surveyed sites the model exceeds the 85% criteria set by TAG Unit 3.1.
- 7.5 The model has been validated to observed journey times within the extents of the network. The data has been provided as 15-minute intervals and an average one-hour journey time for each of the peak network periods.
- 7.6 The journey time comparisons show consistency between the modelled and observed journey time profiles across the majority of the journey time routes. In the AM and PM peaks, there are a number of routes which fall outside of the 15% range (0730-08hrs and 1730-1830hrs). However, all of the routes are **well** within 60s and as such, the journey times are considered representative.
- 7.7 Given that the traffic flows and journey times compare well with on-site conditions, it should be considered a successful calibration and validation exercise.

CONCLUSION

7.8 It is understood that as these conditions are met and are of a sufficient quality to represent real world conditions the M69 Junction 1 and Junction 2 gyratory VISSIM models are considered robust and acceptable for testing of the proposed development.

